人工智能
-
conda pytorch 配置
主要步骤: 0.安装anaconda3(基本没问题) 1.配置清华的源(基本没问题) 2.查看python版本,运行 python3 -V; 查看CUDA版本,运行 nvcc -V 3.如果想用最新版本的python,可以创建新的python版本: conda create –name python38 python=3.8 conda activ…
-
使用pytorch框架实现使用FM模型在movielen数据集上的电影评分预测(rendle的工作)
一、FM介绍 (1)实验的主要任务:使用FM在movielen数据集上进行电影评分预测任务(rendle的工作,经典的特征选择) (2)参考论文:Factorization Machines (3)部署环境:python37 + pytorch1.3 (4)数据集:Movielen的small数据集,使用的rating.csv文件。数据集按照8:2的比例进行…
-
使用pytorch框架实现使用MF模型在movielen数据集上的电影评分预测
一、MF介绍 (1)实验的主要任务:使用MF模型在数据集合上的评分预测(movielens,随机80%训练数据,20%测试数据,随机构造 Koren的经典模型) (2)参考论文:MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS 简单模型:难点在于构造qi与pu,通过来预测评分rui。在构造qi与…
-
pytorch的topk()函数
pytorch.topk()用于返回Tensor中的前k个元素以及元素对应的索引值。例: import torch item=torch.IntTensor([1,2,4,7,3,2]) value,indices=torch.topk(item,3) print(“value:”,value) print(“indices:”,indices) 输出结果为…
-
win10配置cuda和pytorch
简介 pytorch是非常流行的深度学习框架。下面是Windows平台配置pytorch的过程。 一共需要安装cuda、pycharm、anancoda、pytorch。 主要介绍cuda和pytorch的安装。 安装cuda 1. 根据自己的显卡,选择合适的cuda版本。 百度输入CUDA,进入官网下载。 下载结束后,进行安装。 安装结束后,自动弹出此窗口…
-
关于Pytorch的二维tensor的gather和scatter_操作用法分析
看得不明不白(我在下一篇中写了如何理解gather的用法) gather是一个比较复杂的操作,对一个2维tensor,输出的每个元素如下: out[i][j] = input[index[i][j]][j] # dim=0 out[i][j] = input[i][index[i][j]] # dim=1 二维tensor的gather操作 针对0轴 注意i…
-
《深度学习框架PyTorch:入门与实践》的Loss函数构建代码运行问题
在学习陈云的教程《深度学习框架PyTorch:入门与实践》的损失函数构建时代码如下: 可我运行如下代码: output = net(input) target = Variable(t.arange(0,10)) criterion = nn.MSELoss() loss = criterion(output, target) loss 运行结果: Runt…
-
Pytorch的gather用法理解
先放一张表,可以看成是二维数组 行(列)索引 索引0 索引1 索引2 索引3 索引0 0 1 2 3 索引1 4 5 6 7 索引2 8 9 10 11 索引3 12 13 14 15 看一下下面例子代码: 针对0维(输出为行形式) >>> import torch as t >>> a = t.arange(0,16).…
-
动手学深度学习PyTorch版-task04
课后习题 task0402.注意力机制与Seq2seq模型 不同的attetion layer的区别在于score函数的选择,在本节的其余部分,我们将讨论两个常用的注意层 Dot-product Attention 和 Multilayer Perceptron Attention;随后我们将实现一个引入attention的seq2seq模型并在英法翻译语料…
-
动手学深度学习PyTorch版-task03
课后习题 训练集、验证集和测试集的意义https://blog.csdn.net/ch1209498273/article/details/78266558有了模型后,训练集就是用来训练参数的,说准确点,一般是用来梯度下降的。而验证集基本是在每个epoch完成后,用来测试一下当前模型的准确率。因为验证集跟训练集没有交集,因此这个准确率是可靠的。那么为啥还需要…