人工智能
-
手把手教你用Pytorch-Transformers——实战(二)
本文是《手把手教你用Pytorch-Transformers》的第二篇,主要讲实战 手把手教你用Pytorch-Transformers——部分源码解读及相关说明(一) 使用 PyTorch 的可以结合使用 Apex ,加速训练和减小显存的占用 PyTorch必备神器 | 唯快不破:基于Apex的混合精度加速 github托管地址:https://githu…
-
基于pytorch框架的手写数字识别(mnist数据集)
前段时间开始学习pytorch,学习了一点pytorch的小语法,在网上找到了pytorch入门写CNN的代码,自己尝试读懂加上注释。更多的了解一下pytorch,代码注释写的还算清楚,在阅读代码之前可以看一下我收获的知识都是在代码里遇到的不会的语句,我自己通过阅读别博客获取的知识,大多数都是torch在读取数据的操作。先读一下这个有利于阅读代码。 收获的知…
-
pytorch学习: 构建网络模型的几种方法
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。 假设构建一个网络模型如下: 卷积层–》Relu层–》池化层–》全连接层–》Relu层–》全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import Ordered…
-
pytorch: 准备、训练和测试自己的图片数据
大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试。如果我们是自己的图片数据,又该怎么做呢? 一、我的数据 我在学习的时候,使用的是fashion-mnist。这个数据比较小,我的电脑没有GPU,还能吃得消。关于fashion-mnist数据,可以百度,也可以 点此 了解一下,数据就像这个样子: 下载地址:https:…
-
pytorch学习:准备自己的图片数据
图片数据一般有两种情况: 1、所有图片放在一个文件夹内,另外有一个txt文件显示标签。 2、不同类别的图片放在不同的文件夹内,文件夹就是图片的类别。 针对这两种不同的情况,数据集的准备也不相同,第一种情况可以自定义一个Dataset,第二种情况直接调用torchvision.datasets.ImageFolder来处理。下面分别进行说明: 一、所有图片放在…
-
强化学习 单臂摆(CartPole) (DQN, Reinforce, DDPG, PPO)Pytorch
单臂摆是强化学习的一个经典模型,本文采用了4种不同的算法来解决这个问题,使用Pytorch实现。 DQN: 参考: 算法思想: https://mofanpy.com/tutorials/machine-learning/torch/DQN/ 算法实现 https://pytorch.org/tutorials/intermediate/reinforcem…
-
opencv 调用 pytorch训练的resnet模型
使用OpenCV的DNN模块调用pytorch训练的分类模型,这里记录一下中间的流程,主要分为模型训练,模型转换和OpenCV调用三步。 一、训练二分类模型 准备二分类数据,直接使用torchvision.models中的resnet18网络,主要编写的地方是自定义数据类中的__getitem__,和网络最后一层。 __getitem__ 将同类数据放在不同…
-
[PyTorch] rnn,lstm,gru中输入输出维度
本文中的RNN泛指LSTM,GRU等等CNN中和RNN中batchSize的默认位置是不同的。 CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是position 1. 在RNN中输入数据格式: 对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显…
-
关于keras.backend.clear_session()
顾名思义,clear_session就是清除一个session。而session就是tensorflow中我们常见的会话。 来自:https://stackoverflow.com/questions/50895110/what-do-i-need-k-clear-session-and-del-model-for-keras-with-tensorflow…
-
Python 3 & Keras YOLO v3解析与实现
YOLOv3在YOLOv2的基础进行了一些改进,这些更改使其效果变得更好。其与SSD一样准确,但速度快了三倍,具体效果如下图。本文对YOLO v3的改进点进行了总结,并实现了一个基于Keras的YOLOv3检测模型。如果先验边界框不是最好的,但确实与真实对象的重叠超过某个阈值(这里是0.5),那么就忽略这次预测。YOLO v3只为每个真实对象分配一个边界框,…