人工智能
-
[Deep-Learning-with-Python]基于Keras的房价预测
回归问题预测结果为连续值,而不是离散的类别。 波士顿房价数据集 通过20世纪70年代波士顿郊区房价数据集,预测平均房价;数据集的特征包括犯罪率、税率等信息。数据集只有506条记录,划分成404的训练集和102的测试集。每个记录的特征取值范围各不相同。比如,有01,112以及0~100的等等。 加载数据集 from keras.datasets import …
-
基于Keras的imdb数据集电影评论情感二分类
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到/.keras/datasets/目录下,即可正常运行。)中找到下载,下载后放到/.keras/datasets/目录下,即可正常运行。 电影评论分类:二分类 二分类可能是机器学习最常解决的问题。我们将基于评论的内容将电影评论分类:正类和父类。 IMDB数据集 IMDB数据集有5万条来自网络…
-
解决引入keras后出现的Using TensorFlow backend的错误
在引入头文件之后,加入 import os os.environ[‘KERAS_BACKEND’]=’tensorflow’ 就可以完美解决这个问题
-
Keras报KeyError: ‘acc’,KeyError: ‘accuracy’,KeyError: ‘val_acc’等错误解决办法
(1)查看history字典包含哪些值 # 报错语句:accuracy = history_record.history[“acc”] # ——————————————-dyc————————————- history_dict = history_rec…
-
【tensorflow】tf.keras + Sequential() 6 步搭建神经网络
tf.keras 是 tensorflow API,可以快速搭建神经网络模型。 六步: import 相关模块。 指定要喂入网络的训练集和测试集。 在 Sequential() 中搭建网络结构。 在 compile() 中配置训练方法。 在 fit() 中执行训练过程。 用 summary() 打印出网络的结构和参数统计。 Sequential(…
-
Keras lstm 文本分类示例
#基于IMDB数据集的简单文本分类任务 #一层embedding层+一层lstm层+一层全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: 1 ”’Trains an LSTM model on the IMDB sentiment classification task. 2 The dataset is actually …
-
主流机器学习[xgb, lgb, Keras, LR]
Preprocess # 通用的预处理框架 import pandas as pd import numpy as np import scipy as sp # 文件读取 def read_csv_file(f, logging=False): print(“==========读取数据=========”) data = pd.read_csv(f) i…
-
Keras入门(四)之利用CNN模型轻松破解网站验证码
项目简介 在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字。 让我们一起回顾一下那篇文章的处理思路: 利用OpenCV对图像进行单个字符的切割,大概400多张图片; 对切割好的单个字符进行人工手动标记; 搭建合适的CNN模型,对标记好的数据集进行训…
-
NLP用CNN分类Mnist,提取出来的特征训练SVM及Keras的使用(demo)
用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html /DeepLearning Tutorials/keras_usage 提取出来的特征训练SVMhttp://www.bubuko.com/infodetail-792731.html ./dive_into _keras 自己动手写demo实现…
-
Keras mlp 手写数字识别示例
#基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: 1 import keras 2 from keras.datasets import mnist 3 from keras.models import Sequential 4 from ke…