人工智能
-
keras使用多GPU并行训练模型 | keras multi gpu training
本文首发于个人博客https://kezunlin.me/post/95370db7/,欢迎阅读最新内容! keras multi gpu training multi_gpu_model import tensorflow as tf from keras.applications import Xception from keras.utils impo…
-
tf.keras 模型 多个输入 tf.data.Dataset
import tensorflow as tf a = tf.keras.layers.Input(batch_shape=(None,10, 1)) b = tf.keras.layers.Input(batch_shape=(None,1)) fc1 = tf.keras.layers.Dense(16,’relu’)(a) fc2 = tf.keras…
-
解决keras.backend.reshape中的错误ValueError: Tried to convert ‘shape’ to a tensor and failed. Error: Cannot convert a partially known TensorShape to a Tensor
许多CNN网络都有Fusion layer作为融合层,比如: 参考:https://arxiv.org/pdf/1712.03400.pdf 相关代码:(https://github.com/baldassarreFe/deep-koalarization/blob/master/src/koalarization/fusion_layer…
-
[深度学习]Keras利用VGG进行迁移学习模板
# -*- coding: UTF-8 -*- import keras from keras import Model from keras.applications import VGG16 from keras.callbacks import TensorBoard, ModelCheckpoint from keras.layers import …
-
keras rnn做加减法
一、背景 学习rnn怎么使用 例子: 输入两个数,做加法 二、 代码赏析 from __future__ import print_function from keras.models import Sequential from keras.engine.training import slice_X from keras.layers import Ac…
-
keras做多层神经网络
一、 背景与目的 背景:配置好了theano,弄了gpu, 要学dnn方法。 目的:本篇学习keras基本用法, 学习怎么用keras写mlp,学keras搞文本的基本要点。 二、 准备 工具包: theano、numpy、keras等工具包 数据集: 如果下不来, 可以用迅雷下,弄到~/.keras/datasets/下面即可 代码位置:example…
-
TensorFlow2.0提示Cannot find reference ‘keras’ in __init__.py
使用TensorFlow2.0导入from tensorflow.keras import layers会出现Cannot find reference ‘keras’ in __init__.py提示 这虽然不影响程序的运行,但是会导致程序没有提示,并且没有办法点击进入源码,可以通过导入from tensorflow.python.keras import…
-
一个可扩展的深度学习框架的Python实现(仿keras接口)
动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性。keras的接口设计非常优雅,使用起来非常方便。在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试。 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量…
-
深度学习环境搭建常用网址、conda/pip命令行整理(pytorch、paddlepaddle等环境搭建)
前言:最近研究深度学习,安装了好多环境,记录一下,方便后续查阅。 1. Anaconda软件安装 1.1 Anaconda Anaconda是一个用于科学计算的Python发行版,支持Linux、Mac、Windows,包含了众多流行的科学计算、数据分析的Python包。请自行到官网下载安装,下载速度太慢的话可移步清华源。 官网:https://repo.a…
-
Pytorch模型量化
在深度学习中,量化指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算。这么做的好处主要有如下几点: 更少的模型体积,接近4倍的减少; 可以更快的计算,由于更少的内存访问和更快的int8计算,可以快2~4倍。 一个量化后的模型,其部分或者全部的tensor操作会使用int类型来计算,而不是使用量化之前的…