人工智能
-
pytorch下的lib库 源码阅读笔记(2)
2017年11月22日00:25:54 对lib下面的TH的大致结构基本上理解了,我阅读pytorch底层代码的目的是为了知道 python层面那个_C模块是个什么东西,底层完全黑箱的话对于理解pytorch的优缺点太欠缺了。 看到 TH 的 Tensor 结构体定义中offset等变量时不甚理解,然后搜到个大牛的博客,下面是第一篇: 从零开始山寨Caffe…
-
对pytorch中Tensor的剖析
不是python层面Tensor的剖析,是C层面的剖析。 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库。 可以在torch的github上看到相关文档。看了半天才发现pytorch借鉴了很多torch7的东西。 pytorch大量借鉴了torch7下面lua写的东西并且做了更好的设计和优化。 https://git…
-
Pytorch 细节记录
1. PyTorch进行训练和测试时指定实例化的model模式为:train/eval eg: class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() … def reparameterize(self, mu, logvar): if self.training: st…
-
Pytorch 资料汇总(持续更新)
1. Pytorch 论坛/网站 PyTorch 中文网 python优先的深度学习框架 Pytorch中文文档 Pythrch-CN文档地址 PyTorch 基礎篇 2. Pytorch 书籍 深度学习入门之PyTorch 深度学习框架PyTorch:入门与实践 3. Pytorch项目实现 the-incredible-pytorch Pyt…
-
Pytorch tutorial 之Transfer Learning
引自官方: Transfer Learning tutorial Ng在Deeplearning.ai中讲过迁移学习适用于任务A、B有相同输入、任务B比任务A有更少的数据、A任务的低级特征有助于任务B。对于迁移学习,经验规则是如果任务B的数据很小,那可能只需训练最后一层的权重。若有足够多的数据则可以重新训练网络中的所有层。如果重新训练网络中的所有参数,这个…
-
Pytorch tutorial 之Datar Loading and Processing (2)
上文介绍了数据读取、数据转换、批量处理等等。了解到在PyTorch中,数据加载主要有两种方式: 1. 自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset。且须实现__len__()和__getitem__()两个方法。 2. 利用torchvision包。torchvision已经预先实现了常用的Dataset,…
-
Pytorch Visdom
fb官方的一些demo 一. show something 1. vis.image:显示一张图片 viz.image( np.random.rand(3, 512, 256), opts=dict(title=’Random!’, caption=’How random.’), ) opts.jpgquality:JPG质量(number0-100;默…
-
Pytorch 入门之Siamese网络
首次体验Pytorch,本文参考于:github and PyTorch 中文网人脸相似度对比 本文主要熟悉Pytorch大致流程,修改了读取数据部分。没有采用原作者的ImageFolder方法: ImageFolder(root, transform=None, target_transform=None, loader=defaul…
-
Pytorch之可视化
先解决下keras可视化安装graphviz的问题: 注意安装顺序: sudo pip3 install graphviz # python包 sudo apt-get install graphviz # 软件本身 sudo pip3 install pydot sudo pip3 install pydot-ng # 版本兼容需要,可选 1. 使用…
-
Pytorch入门之VAE
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现。 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念。 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片。而这些图像碎片几乎都可由64种正交的边组合得到。而且组合出一张碎…