Keras

  • 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction wit…

    2023年4月6日
    00
  • Keras中自定义复杂的loss函数

    By 苏剑林 | 2017-07-22 | 92497位读者  Keras是一个搭积木式的深度学习框架,用它可以很方便且直观地搭建一些常见的深度学习模型。在tensorflow出来之前,Keras就已经几乎是当时最火的深度学习框架,以theano为后端,而如今Keras已经同时支持四种后端:theano、tensorflow、cntk、mxnet(前三种官方…

    Keras 2023年4月6日
    00
  • 从loss处理图像分割中类别极度不均衡的状况—keras

    置顶 2019-02-10 23:21:35 chestnut– 阅读数 15597 文章标签: 图像分割kerasdice lossfocal loss类别不均衡更多 分类专栏: 深度学习笔记   版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net…

    2023年4月6日
    00
  • How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    by Jason Brownlee on August 9, 2016 in Deep Learning Tweet  Share Share Last Updated on October 3, 2019 Hyperparameter optimization is a big part of deep learning. The reason is th…

    2023年4月6日
    00
  • Keras/Python深度学习中的网格搜索超参数调优(附源码)

    2016-08-16 08:49:13 不系之舟913 阅读数 8883 文章标签: 深度学习 更多 分类专栏: 深度学习 机器学习   超参数优化是深度学习中的重要组成部分。其原因在于,神经网络是公认的难以配置,而又有很多参数需要设置。最重要的是,个别模型的训练非常缓慢。 在这篇文章中,你会了解到如何使用scikit-learn python机器学习库中的…

    Keras 2023年4月6日
    00
  • Keras 之父讲解 Keras:几行代码就能在分布式环境训练模型 | Google I/O 2017

    2017年05月26日 15:56:44来源:雷锋网       评论         雷锋网按:在上周的谷歌开发者大会 I/O 2017 的讲座中,Keras 之父 Francois Chollet 被请出来向全世界的机器学习开发者进行一场对 Keras 的综合介绍以及实战示例。说起来,这个子小小的男人不但是畅销书 《Deep learning with …

    2023年4月6日
    00
  • 用keras作CNN卷积网络书本分类(书本、非书本)

    本文介绍如何使用keras作图片分类(2分类与多分类,其实就一个参数的区别。。。呵呵)  先来看看解决的问题:从一堆图片中分出是不是书本,也就是最终给图片标签上:“书本“、“非书本”,简单吧。 先来看看网络模型,用到了卷积和全连接层,最后套上SOFTMAX算出各自概率,输出ONE-HOT码,主要部件就是这些,下面的nb_classes就是用来控制分类数的,本…

    2023年4月6日
    00
  • Keras 可视化 model

    参考:https://keras.io/visualization/ error解决参考:http://blog.csdn.net/wangjian1204/article/details/50346457 平台: win7 Python3.5 安装附加依赖项 pydot pip install pydot_ng 官方文档中说直接安装pydot,但是由于ke…

    2023年4月6日
    00
  • SSD Network Architecture–keras version

    这里的网络架构和论文中插图中的网络架构是相一致的。对了,忘了说了,这里使用的keras版本是1.2.2,等源码读完之后,我自己改一个2.0.6版本上传到github上面。可别直接粘贴复制,里面有些中文的解释,不一定可行的。#defint input shapeinput_shape = (300,300,3)#defint the number of cla…

    Keras 2023年4月6日
    00
  • keras中的Flatten和Reshape

    最近在看SSD源码的时候,就一直不理解,在模型构建的时候如果使用Flatten或者是Merge层,那么整个数据的shape就发生了变化,那么还可以对应起来么(可能你不知道我在说什么)?后来不知怎么的,就想明白了,只要先前按照同样的方式进行操作,那么就可以对应起来。同样的,只要按照之前操作的逆操作,就可以将数据的shape进行还原。 最后在说一句,在追看Ten…

    Keras 2023年4月6日
    00
合作推广
合作推广
分享本页
返回顶部