Keras
-
深入学习Keras中Sequential模型及方法
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠。 Keras实现了很多层,包括core核心层,Convolution卷积层、Pooling池化层等非常丰富有趣的网络结构。 我们可以通过将层的列表传递给Sequential的构造函数,来创建一个Sequential模型。 …
-
keras的神经网络步骤
1/加载keras模块 2. 变量初始化 3. 数据集的准备 4.one-hot编码,转换类符号 5. 使用Sequential建立模型 6.打印模型 7.模型compile 8.数据归一化(图像数据需要,其他看情况吧) 9.数据增强策略 10.模型训练 11.模型评估
-
keras中的keras.utils.to_categorical方法
参考链接:https://blog.csdn.net/nima1994/article/details/82468965 参考链接:https://blog.csdn.net/gdl3463315/article/details/82659378 to_categorical(y, num_classes=None, dtype=’float32′) 将整…
-
keras训练函数fit和fit_generator对比,图像生成器ImageDataGenerator数据增强
1. [深度学习] Keras 如何使用fit和fit_generator https://blog.csdn.net/zwqjoy/article/details/88356094 ps:解决样本数量不均衡:fit_generator中设置参数class_weight = ‘auto’ 2. 实现批量数据增强 | keras ImageDataGenera…
-
keras训练实例-python实现
用keras训练模型并实时显示loss/acc曲线,(重要的事情说三遍:实时!实时!实时!)实时导出loss/acc数值(导出的方法就是实时把loss/acc等写到一个文本文件中,其他模块如前端调用时可直接读取文本文件),同时也涉及了plt画图方法 ps:以下代码基于网上的一段程序修改完成,如有侵权,请联系我哈! 上代码: from keras import…
-
keras中loss与val_loss的关系
loss是训练集的损失值,val_loss是测试集的损失值 以下是loss与val_loss的变化反映出训练走向的规律总结: train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的) train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化) train loss 趋于不变,te…
-
keras,在 fit 和 evaluate 中 都有 verbose 这个参数
1.fit 中的 verbose verbose:该参数的值控制日志显示的方式verbose = 0 不在标准输出流输出日志信息verbose = 1 输出进度条记录verbose = 2 每个epoch输出一行记录注意: 默认为 1 2.evaluate 中的 verbose verbose:控制日志显示的方式verbose = 0 …
-
LeNet-5模型的keras实现
1 import keras 2 from keras.models import Sequential 3 from keras.layers import Input,Dense,Activation,Conv2D,MaxPooling2D,Flatten 4 from keras.datasets import mnist 5 6 7 (x_train…
-
Tensorflow、Pytorch、Keras的多GPU使用
方法一 :使用深度学习工具提供的 API指定 1.1 Tesorflow tensroflow指定GPU的多卡并行的时候,也是可以先将声明的变量放入GPU中(PS:这点我还是不太明白,为什么其他的框架没有这样做) with tf.device(“/gpu:%d”%i): with tf.device(“cpu:0”) 在创建Session的时候,通过指…
-
VGG16等keras预训练权重文件的下载及本地存放
VGG16等keras预训练权重文件的下载: https://github.com/fchollet/deep-learning-models/releases/ .h5文件本地存放目录: Linux下是放在“~/.keras/models/”中 Win下则放在Python的“settings/.keras/models/”中 …