Keras
-
如何保存Keras模型
我们不推荐使用pickle或cPickle来保存Keras模型 你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含: 模型的结构,以便重构该模型 模型的权重 训练配置(损失函数,优化器等) 优化器的状态,以便于从上次训练中断的地方开始 使用keras.models.load_model(filepa…
-
Jetson tx2的tensorflow keras环境搭建
其实我一直都在想,搞算法的不仅仅是服务,我们更是要在一个平台上去实现服务,因此,在工业领域,板子是很重要的,它承载着无限的机遇和挑战,当然,我并不是特别懂一些底层的东西,但是这篇博客希望可以帮助有需要的人。 首先我们回到原点,就是jetpack 3.3刷完机后,现在要装tensorflow和keras。自然的,我们可以想到,需要 miniconda或anac…
-
keras_实现cnn_手写数字识别
# conding:utf-8 import os os.environ[‘TF_CPP_MIN_LOG_LEVEL’] = ‘2’ import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from kera…
-
Keras文本预处理详解
汇总 Tokenizer分词器(类) Tokenizer.fit_on_texts分词器方法:实现分词 Tokenizer.texts_to_sequences分词器方法:输出向量序列 pad_sequences进行padding 具体示例和代码分析 分词器分词和向量化 主要的类是Tokenizer,用到其中的一些方法将文本转换为序列。需要注意的是这个类的一…
-
基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
http://blog.csdn.net/niuwei22007/article/details/49045909
-
keras中文文档笔记1——概述
http://blog.csdn.net/zhzhx1204/article/details/77018538
-
keras中的一些小tips(一)
写这篇博客的原因主要是为了总结下在深度学习中我们常会遇到的一些问题,以及不知道如何解决,我准备把这个部分作为一个系列,为了让大家少走一些坑,对于本博客有什么错误,欢迎大家指出,下面切入正题吧。 1. 深度学习,一个令人头疼的问题就是如何调参? 简而言之,如果数据集复杂的话,那么就要增加网络的层数,模型欠拟合了,加节点。 2. 关于验证集的loss…
-
利用keras进行手写数字识别模型训练,并输出训练准确度
from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() #train_images 和 train_labels 是训练集 train_images.shape#第一个数字表示图片张数,后面表示图…
-
tensorflow2 keras.Callback logs
官方文档上表示logs内存的内容为 on_epoch_end: logs include `acc` and `loss`, and optionally include `val_loss` (if validation is enabled in `fit`), and `val_acc` (if validation and accuracy moni…
-
Keras实现简单分类神经网络
#keras搭建神经网络import sklearnfrom keras.models import Sequentialfrom keras.layers import Dense,Activationfrom keras.optimizers import SGDimport numpy as npfrom sklearn.datasets import…