Keras
-
Keras实现autoencoder
Keras使我们搭建神经网络变得异常简单,之前我们使用了Sequential来搭建LSTM:keras实现LSTM。 我们要使用Keras的functional API搭建更加灵活的网络结构,比如说本文的autoencoder,关于autoencoder的介绍可以在这里找到:deep autoencoder。 现在我们就开始。 step 0 导入需要的包…
-
用keras实现lstm 利用Keras下的LSTM进行情感分析
1 I either LOVE Brokeback Mountain or think it’s great that homosexuality is becoming more acceptable!:1 Anyway, thats why I love ” Brokeback Mountain.1 Brokeback mountain…
-
tensorflow1.15-keras 多标签 xception训练与测试
本任务是对人脸属性的性别(female,male)与年龄(children,young,adult,older)分类xception可以用官方提供的,这里是自己搭的,参考别人的。这里的主要可以学习的是自己写数据生成器:data_generator, generator=train_gen.get_mini_batch(transform = True) 数据…
-
keras ImageDataGenerator 数据增强的数据显示查看
import skimage.io as io import os,sys from skimage import data_dir import numpy as np import matplotlib.pyplot as plt import cv2 from tensorflow.keras.preprocessing.image import Im…
-
tf2.0/1.15 keras 简单的二分类
#!/usr/bin/env python # coding: utf-8 import os,sys import numpy as np import scipy from scipy import ndimage import tensorflow as tf import matplotlib.pyplot as plt from tensorflo…
-
理解卷积神经网络中的输入与输出形状(Keras实现)
即使我们从理论上理解了卷积神经网络,在实际进行将数据拟合到网络时,很多人仍然对其网络的输入和输出形状(shape)感到困惑。本文章将帮助你理解卷积神经网络的输入和输出形状。 让我们看看一个例子。CNN的输入数据如下图所示。我们假设我们的数据是图像的集合。 输入的形状 你始终必须将4D数组作为CNN的输入。因此,输入数据的形状为(batch_size,heig…
-
在Keras中使用tensorboard可视化acc等曲线
1.使用tensorboard可视化ACC,loss等曲线 1 keras.callbacks.TensorBoard(log_dir=’./Graph’, 2 histogram_freq= 0 , 3 write_graph=True, 4 write_images=True) 5 tbCallBack = keras.callbacks.TensorB…
-
Sklearn,TensorFlow,keras模型保存与读取
一、sklearn模型保存与读取 1、保存 1 from sklearn.externals import joblib 2 from sklearn import svm 3 X = [[0, 0], [1, 1]] 4 y = [0, 1] 5 clf = svm.SVC() 6 clf.fit(X, y) 7 joblib.dump(clf, “tra…
-
Keras2.2 predict和fit_generator的区别
查看keras文档中,predict函数原型:predict(self, x, batch_size=32, verbose=0) 说明:只使用batch_size=32,也就是说每次将batch_size=32的数据通过PCI总线传到GPU,然后进行预测。在一些问题中,batch_size=32明显是非常小的。而通过PCI传数据是非常耗时的。所以,使用的时…
-
Keras下载的数据集以及预训练模型保存在哪里
Keras下载的数据集在以下目录中: root\\.keras\datasets Keras下载的预训练模型在以下目录中: root\\.keras\models 在win10系统来说,用户主目录是:C:\Users\user_name,一般化user_name是Administrator在Linux中,用户主目录是:对一般用户,/home/user_nam…