Keras
-
Keras Layer 的 call(x) 和 input_shape
今天用Keras编程的时候发现一个问题, ···input_layer = K.layers.Input(shape=(10,)) x = K.layers.Dense(20)(input_layer)x = K.layers.Dense(20)(x)···以上写法是可行的,但是以下写法却不行 L = K.layers.Dense(20) y = L(inp…
-
【Python】keras神经网络识别mnist
上次用Matlab写过一个识别Mnist的神经网络,地址在:https://www.cnblogs.com/tiandsp/p/9042908.html 这次又用Keras做了一个差不多的,毕竟,现在最流行的项目都是Python做的,我也跟一下潮流:) 数据是从本地解析好的图像和标签载入的。 神经网络有两个隐含层,都有512个节点。 import numpy…
-
visualization of filters keras 基于Keras的卷积神经网络(CNN)可视化
https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/details/79112872 https://blog.csdn.net/and_w/article/details/70336506 https://hackerno…
-
yolov3+tensorflow+keras实现吸烟的训练全流程及识别检测
yolov3+tensorflow+keras实现吸烟的训练全流程及识别检测 弈休丶 2019-12-30 23:29:54 1591 收藏 19分类专栏: 基于yolov3+tensorflow+keras实现吸烟的训练全流程版权一.前言近期,在研究人工智能机器视觉领域,拜读了深度学习相关资料,在练手期间比较了各前沿的网络架构,个人认为基于darknet5…
-
使用 Keras 的 ImageDataGenerator 划分训练集和测试集
Keras的ImageDataGenerator可以方便的读入文件夹中的图片并自动生成训练数据 . 如果图片已经被分成训练集和测试集两个文件夹, 可以独立创建两个ImageDataGenerator. 但是在很多情况下, 作者提供的数据集并不区分训练集和测试集, 这时候也可以使用ImageDataGenerator. 假设当前目录下有一个 Mushrooms…
-
keras—神经网络CNN—CIFAR_10图像识别 – AI大道理
keras—神经网络CNN—CIFAR_10图像识别 1 from keras.datasets import cifar10 2 from keras.utils import np_utils 3 import matplotlib.pyplot as plt 4 from keras.models import load_model 5 import …
-
基于Python、Keras和OpenCV的实时人脸活体检测
作者|Jordan Van Eetveldt编译|Flin来源|towardsdatascience 你在互联网上找到的大多数人脸识别算法和研究论文都遭受照片攻击。这些方法在检测和识别来自网络摄像头的图像、视频和视频流中的人脸方面非常有效。然而,他们无法区分现实生活中的面孔和照片上的面孔。这种无法识别人脸的现象是由于这些算法在二维帧上工作。 现在让我们想象一…
-
【tf.keras】ssl.SSLError: [SSL: DECRYPTION_FAILED_OR_BAD_RECORD_MAC] decryption failed or bad record mac (_ssl.c:1977)
问题描述 tf.keras 在加载 cifar10 数据时报错,ssl.SSLError: [SSL: DECRYPTION_FAILED_OR_BAD_RECORD_MAC] decryption failed or bad record mac (_ssl.c:1977) import tensorflow as tf cifar10 = tf.kera…
-
运行Keras版本的Faster R-CNN(1)
Keras版本的Faster R-CNN源码下载地址:https://github.com/yhenon/keras-frcnn下载以后,用PyCharm打开(前提是已经安装了Tensorflow-gpu和Keras),打开以后可以看到项目的结构: 修改requirements.txt,设置Keras到已安装的版本,如 Keras==2.0.8 建议版本不要…
-
Keras常用层
Dense层:全连接层 Activatiion层:激活层,对一个层的输出施加激活函数 Dropout层:为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合 Flatten层:Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。F…