tensorflow
-
tensorflow实现验证码识别案例
1、知识点 “”” 验证码分析: 对图片进行分析: 1、分割识别 2、整体识别 输出:[3,5,7] –>softmax转为概率[0.04,0.16,0.8] —> 交叉熵计算损失值 (目标值和预测值的对数) tf.argmax(预测值,2)验证码样例:[NAZP] [XCVB] [WEFW] ,都是字母的 “”” 2、将数据写入TFRec…
-
tensorflow文件读取
1、知识点 “”” 注意:在tensorflow当中,运行操作具有依赖性 1、CPU操作计算与IO计算区别: CPU操作: 1、tensorflow是一个正真的多线程,并行的执行任务 2、使用tfrecords对文件读取进行改善 IO操作: 1、一次性读取数据,消耗内存 2、一次性进行训练 2、队列API: 1、tf.FIFOQueue(capacity, …
-
tensorflow实现线性回归、以及模型保存与加载
内容:包含tensorflow变量作用域、tensorboard收集、模型保存与加载、自定义命令行参数 1、知识点 “”” 1、训练过程: 1、准备好特征和目标值 2、建立模型,随机初始化权重和偏置; 模型的参数必须要使用变量 3、求损失函数,误差为均方误差 4、梯度下降去优化损失过程,指定学习率 2、Tensorflow运算API: 1、矩阵运算:tf.m…
-
tensorflow2.0 squeeze出错
用tf.keras写了自定义层,但在调用自定义层的时候总是报错,找了好久才发现问题所在,所以记下此问题。 问题代码 u=tf.squeeze(tf.expand_dims(tf.expand_dims(inputs,axis=1),axis=3)@self.kernel,axis=3) 其中inputs的第一维为None,这里的代码为自定义的前向传播。我是想…
-
【华为云技术分享】【一统江湖的大前端(9)】TensorFlow.js 开箱即用的深度学习工具
示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:《大史住在大前端》原创博文目录 目录 一. 上手TensorFlow.js 二. 使用TensorFlow.js构建卷积神经网络 卷积神经网络 搭建LeNet-5模型 三. 基于迁移学习的语音指令识别 推荐课程 TensorFlow是Google推…
-
Tensorflow实现图像数据增强(Data Augmentation)
在我们处理有关图像的任务,比如目标检测,分类,语义分割等等问题当中,我们常常需要对训练集当中的图片进行数据增强(data augmentation),这样会让训练集的样本增多,同时让神经网络模型的泛化能力更强。在进行图片的数据增强时,我们一般会对图像进行翻转,剪裁,灰度变化,对比度变化,颜色变化等等方式生成新的训练集,这就是计算机视觉当中的数据增强。我们来看…
-
Tensorflow函数式API的使用
在我们使用tensorflow时,如果不能使用函数式api进行编程,那么一些复杂的神经网络结构就不会实现出来,只能使用简单的单向模型进行一层一层地堆叠。如果稍微复杂一点,遇到了Resnet这种带有残差模块的神经网络,那么用简单的神经网络堆叠的方式则不可能把这种网络堆叠出来。下面我们来使用函数式API来编写一个简单的全连接神经网络:首先导包: from ten…
-
Tensorflow实现对fashion mnist(衣服,裤子等图片)数据集的softmax分类
首先我们要明确的是下面我们讲解的是一个很基础的神经网络,因为我们只是为了通过下面这个实例来为大家解释如何使用tensorflow2.0这个框架。整个神经网络的架构是首先是flatten层(把图片从二维转化为一维),然后经过一系列的全连接网络层,中间穿插着一些dropout层来避免过拟合,最后达到softmax层实现多分类。在整个神经网络当中并没有用到卷积神经…
-
Tensorflow最简单实现ResNet50残差神经网络,进行图像分类,速度超快
在图像分类领域内,其中的大杀器莫过于Resnet50了,这个残差神经网络当时被发明出来之后,顿时毁天灭敌,其余任何模型都无法想与之比拟。我们下面用Tensorflow来调用这个模型,让我们的神经网络对Fashion-mnist数据集进行图像分类.由于在这个数据集当中图像的尺寸是28*28*1的,如果想要使用resnet那就需要把28*28*1的灰度图变为22…
-
深度学习框架TensorFlow在Kubernetes上的实践
什么是TensorFlow TensorFlow是谷歌在去年11月份开源出来的深度学习框架。开篇我们提到过AlphaGo,它的开发团队DeepMind已经宣布之后的所有系统都将基于TensorFlow来实现。TensorFlow一款非常强大的开源深度学习开源工具。它可以支持手机端、CPU、GPU以及分布式集群。TensorFlow在学术界和工业界的应用都非常…