解决tensorflow测试模型时NotFoundError错误的问题

解决TensorFlow测试模型时NotFoundError错误的问题

在TensorFlow中,当我们测试模型时,有时会遇到NotFoundError错误。这个错误通常是由于模型文件路径不正确或者模型文件不存在导致的。本攻略将介绍如何解决这个问题,并提供两个示例。

示例1:使用绝对路径

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf

  1. 定义模型。

python
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()

  1. 训练模型。

python
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
if i % 100 == 0:
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
saver.save(sess, "/absolute/path/to/model.ckpt")

  1. 加载模型并测试。

python
with tf.Session() as sess:
saver.restore(sess, "/absolute/path/to/model.ckpt")
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

在这个示例中,我们演示了如何使用绝对路径来解决NotFoundError错误。

示例2:使用相对路径

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf

  1. 定义模型。

python
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()

  1. 训练模型。

python
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
if i % 100 == 0:
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
saver.save(sess, "./model.ckpt")

  1. 加载模型并测试。

python
with tf.Session() as sess:
saver.restore(sess, "./model.ckpt")
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

在这个示例中,我们演示了如何使用相对路径来解决NotFoundError错误。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:解决tensorflow测试模型时NotFoundError错误的问题 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • TensorFlow GPU版本号与CUDA的对应产生的错误

    前言   感悟:cuda 8.0+cudnn 6.0+TensorFlow 1.3  cuda 9.0+cudnn 7.0+TensorFlow 1.7 python3.6.2+cuda 9.0+cudnn7.5+Tensorflow 1.10.0+Anaconda4.6.11 最近在新的工作站上重新装TensorFlow的GPU版本,刚开始由于省事,直接更…

    tensorflow 2023年4月7日
    00
  • 深度学习之TensorFlow安装与初体验

    学习前 搞懂一些关系和概念首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的神经网络结构是浅度学习的模型。 浅度学习:层数少于3层,使用全连接的一般被认为是浅度神经网络,也就是浅度学习的模型,全连接的可能性过于繁多,如果层数超过三层,计算量呈现指数级增长,计算机无法计算到结果,所以…

    2023年4月5日
    00
  • TensorFlow用expand_dim()来增加维度的方法

    首先,expand_dims() 函数是 TensorFlow 中用于增加张量维度的函数,可传入三个参数: input: 要增加维度的张量 axis: 新维度所在的位置,取值范围为 $[-(R+1), R]$,其中 R 为原张量的秩,当 axis 为负数时表示新维度在倒数第 $|axis|$ 个位置(比如 -1 表示最后一个位置) name: 可选参数,表示…

    tensorflow 2023年5月17日
    00
  • TensorFlow for distributed

    本目录包括了运行时分布式TensorFlow的实现,其底层使用了gRPC 作为进程内通信的支持库。 Quick start 首先,需要构建一个TensorFlow的服务端可执行版本(grpc_tensorflow_server) 以及一个基于gRPC的客户端。目前只能基于源代码进行自构建, 但是会包含在未来发布的二进制版本中。可以使用如下命令进行构建: # …

    tensorflow 2023年4月6日
    00
  • Android Things 专题6 完整的栗子:运用TensorFlow解析图像

    文| 谷歌开发技术专家 (GDE) 王玉成 (York Wang) 前面絮叨了这么多。好像还没有一个整体的概念。我们怎样写一个完整的代码呢? 如今深度学习非常火,那我们就在Android Things中,利用摄像头抓拍图片,让 TensorFlow 去识别图像,最后用扬声器告诉我们结果。 是不是非常酷?说主要的功能就说了这么长一串。那垒代码得垒多久啊? 项目…

    2023年4月8日
    00
  • 浅谈Docker运行Tensorboard和jupyter的方法

    Docker是一种流行的容器化技术,可以用于快速部署和运行应用程序。在使用Tensorboard和jupyter时,我们可以使用Docker来方便地运行它们。本文将详细讲解如何使用Docker运行Tensorboard和jupyter,并提供两个示例说明。 步骤1:安装Docker 首先,我们需要安装Docker。可以从Docker官网下载并安装Docker…

    tensorflow 2023年5月16日
    00
  • TensorFlow2.0——划分数据集

    将数据划分成若干批次的数据,可以使用tf.train或者tf.data.Dataset中的方法。 (1)划分方法 # 下面是,数据批次划分 batch_size = 10 # 将训练数据的特征和标签组合,使用from_tensor_slices将数据放入队列 dataset = tfdata.Dataset.from_tensor_slices((featu…

    tensorflow 2023年4月7日
    00
  • tensorflow之word2vec_basic代码研究

    源代码网址: https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/examples/tutorials/word2vec/word2vec_basic.py简书上有一篇此代码的详解,图文并茂,可直接看这篇详解: http://www.jianshu.com/p/f682066f0586#…

    tensorflow 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部