python Pandas如何对数据集随机抽样

Python Pandas是一个基于NumPy的Python库,提供了一个高效的数据分析工具集。在Pandas中,可以通过sample函数来对大型数据集进行随机抽样。

1. sample函数介绍

Pandas通过sample函数来对数据集进行随机抽样。sample函数的语法如下:

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

主要参数说明:

  • n:抽取样本的数量
  • frac:抽取样本占原始数据集的比例
  • replace:是否有放回地抽样
  • weights:是一个可选参数,为样本中每行的权重
  • random_state:随机种子
  • axis:抽样方向

其中,n和frac只能设定其中一个参数。

2. 示例说明

示例1:随机抽取数据集中20%的数据

首先,创建一个数据集:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1,2,3,4,5], 'B': [6,7,8,9,10],'C': ['a', 'b', 'c', 'd', 'e']})
print(df)

输出:

   A   B  C
0  1   6  a
1  2   7  b
2  3   8  c
3  4   9  d
4  5  10  e

随机抽取数据集中的20%进行抽样:

sampled_df = df.sample(frac=0.2)
print(sampled_df)

输出:

   A  B  C
1  2  7  b

示例2:随机抽取数据集中3条数据

随机抽取数据集中的3条数据:

sampled_df = df.sample(n=3)
print(sampled_df)

输出:

   A  B  C
0  1  6  a
2  3  8  c
3  4  9  d

3. 总结

通过Pandas的sample函数,用户可以轻松对大型数据集进行随机抽样操作,并根据具体需求,设置相应参数。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python Pandas如何对数据集随机抽样 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 如何在Pandas中删除数据框架中的随机符号

    在Pandas中删除数据框架中的随机符号,可以采用str.replace()或者正则表达式的方式进行操作。 首先我们要导入Pandas库。 import pandas as pd 然后,可以创建一个包含随机符号的数据框架,来演示删除随机符号的过程。例如: df = pd.DataFrame({ ‘A’: [‘a!b’, ‘c@d’, ‘e#f’], ‘B’:…

    python-answer 2023年3月27日
    00
  • 详解Python数据分析–Pandas知识点

    详解Python数据分析–Pandas知识点 简介 Pandas 是基于 NumPy 数组构建的数据分析工具,专门针对于数据的处理和分析。它提供了许多用于数据清洗、分析和转换的高级函数,可以快速、简便地处理数据。 本文将介绍 Pandas 的基本操作和常用函数,希望能对需要使用 Pandas 进行数据分析的人员提供帮助。 Pandas基本操作 数据读取 P…

    python 2023年5月14日
    00
  • pandas中ix的使用详细讲解

    当你需要使用 Pandas 中的 ix 方法时,建议使用更安全和更通用的 loc 或 iloc 方法。ix 方法已经被官方弃用,并可能在未来的 Pandas 版本中被移除。这里我们以 loc 方法作为代替方法。 loc 可以通过行标签和/或列标签进行选择。行和列标签可以是字符串、序列或布尔值数组。当我们不需要在多个方面进行索引和选择时,loc 方法通常是最好…

    python 2023年5月14日
    00
  • Pandas —— resample()重采样和asfreq()频度转换方式

    Pandas是Python中常用的数据分析库,提供了丰富的数据处理工具。其中,resample()和asfreq()是Pandas中常用的时间序列处理函数,能够实现数据重采样和频度转换。本文将详细讲解这两个函数的用法。 resample()函数 resample()函数用于数据重采样,它可以将时间序列数据下采样或上采样至不同的频度。下采样是指将高频数据转换为…

    python 2023年6月13日
    00
  • pandas实现导出数据的四种方式

    下面是“pandas实现导出数据的四种方式”的完整攻略: 1. 介绍 Pandas是一个数据处理工具,它提供了很多方便实用的函数以及数据结构。在数据处理过程中,导出数据也是必不可少的一步。这里我们就介绍四种常用的导出数据方式。 2. 导出csv格式 首先我们可以使用pandas提供的方法将数据导出csv格式。这个方法非常简单,我们只需要在DataFrame上…

    python 2023年5月14日
    00
  • Python Pandas基础操作详解

    PythonPandas基础操作详解 简介 PythonPandas是一款开源的数据处理库,其操作和数据结构与Excel类似,且支持导入和导出多种数据格式,包括CSV、JSON、SQL、Excel等。 PythonPandas的核心数据结构是DataFrame,可以将不同格式的文件转化为DataFrame,方便进行数据清洗、转换、分析和建模等操作。 本攻略将…

    python 2023年5月14日
    00
  • pandas时间序列之如何将int转换成datetime格式

    当我们使用pandas对时间序列数据进行分析时,常常需要将整型数据表示的时间转化为datetime格式,以实现更精确的数据分析。 这里提供一种将int转换为datetime的方法: 首先需要引入pandas库和datetime库: import pandas as pd from datetime import datetime 其次,我们需要定义一个转换函…

    python 2023年5月14日
    00
  • python中isoweekday和weekday的区别及说明

    当我们使用Python中的datetime模块进行日期处理时,常常会用到weekday()和isoweekday()两个函数。虽然这两个函数都可以用于获取日期是一周中的星期几,但是它们之间确实有些区别。下面我们就来详细讲解一下它们的区别及说明。 weekday()函数 weekday()函数返回日期值是星期几,其中星期一为0,星期日为6。以下是weekday…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部