谈一谈Python中的装饰器

1、装饰器基础介绍

1.1 何为Python中的装饰器?

Python中装饰器的定义以及用途:

装饰器是一种特殊的函数,它可以接受一个函数作为参数,并返回一个新的函数。装饰器可以用来修改或增强函数的行为,而不需要修改函数本身的代码。在Python中,装饰器通常用于实现AOP(面向切面编程),例如日志记录、性能分析、缓存等。装饰器的语法使用@符号,将装饰器函数放在被装饰函数的定义之前

学过设计模式的朋友都知道,设计模式的结构型模式中也有一个叫装饰器模式,那这个和Python中的装饰器有什么不同呢?

设计模式中的装饰器的定义以及用途:

设计模式中的装饰器是一种结构型模式,它可以在不改变原对象的情况下,为对象添加额外的功能。装饰器模式通常用于在运行时动态地为对象添加功能,而不是在编译时静态地为对象添加功能。装饰器模式通常涉及到多个对象之间的协作,而不是单个函数或对象。

因此,Python中的装饰器和设计模式中的装饰器虽然名称相同,但是它们的实现方式和应用场景有很大的不同。

1.2 闭包

那Python种的装饰器是怎么实现的呢?先不用着急,我们先来一起学习学习Python中的闭包。

那什么叫做闭包呢?

闭包是指一个函数和它所在的环境变量的组合,即在函数内部定义的函数可以访问外部函数的变量和参数,即使外部函数已经返回。闭包可以用来实现函数式编程中的柯里化、惰性求值、函数组合等高级特性。

看着上面的文字,是不是感觉有点抽象。我说一说我对闭包的理解

闭包是由外部函数和内部函数,内部函数引用到了外部函数定义的变量,外部函数的返回值是内部函数的函数名。对于这样的函数,我们就称为闭包。

好像也有点抽象,我们来看一断代码,就能够理解上面的话了。

def my_decorator():  # my_decorator 这个就叫做外部函数
    a = 1
    def inner():  # inner 这个叫做内部函数
        print(a)  # 内部函数引用到了外部函数中定义的变量
    return inner  # 外部函数的返回值是内部函数名

2、函数装饰器的实现

上面讲解了装饰器的定义、用途,还有闭包,那怎么去实现一个装饰器呢?不急,接下来我们一起来学习如何实现装饰器。

装饰器不是说可以不改变一个函数源代码的基础上,给这个函数添加额外的功能吗?那怎么做呢?

接下来,我们就一起实现一个装饰器,来计算函数的执行时间。Let‘s go!

2.1 不使用@实现装饰器

首先,使用闭包定义一个统计函数执行时间的功能。

def process_time(func):
    def inner(*args, **kwargs):
        start_time = time.time()
        ret = func(*args, **kwargs)
        end_time = time.time()
        print("函数的执行时间为:%d" % (end_time-start_time))
        return ret
    return inner

接下来定义一个函数,使用比较来计算函数的执行时间。

import time


def process_time(func):
    def inner(*args, **kwargs):
        start_time = time.time()
        ret = func(*args, **kwargs)
        end_time = time.time()
        print("函数的执行时间为:%d" % (end_time-start_time))
        return ret
    return inner


def test(sleep_time):
    time.sleep(sleep_time)


t1 = process_time(test)
t1(1)
print("------------")
t1(2)

执行结果:

函数的执行时间为:1
------------
函数的执行时间为:2

通过上面的代码,我们观察到,我们并没有修改test函数的源代码,依旧给test函数添加上了统计函数执行时间的功能。

Python中实现上述功能,有更加优雅的方式。下面,我们就一起来看看如何实现的。

2.2 Python中使用语法糖的装饰器(推荐使用)

import time


def process_time(func):
    def inner(*args, **kwargs):
        start_time = time.time()
        ret = func(*args, **kwargs)
        end_time = time.time()
        print("函数的执行时间为:%d" % (end_time-start_time))
        return ret
    return inner


@process_time
def test(sleep_time):
    time.sleep(sleep_time)


test(1)
print("------------")
test(2)

执行结果:

函数的执行时间为:1
------------
函数的执行时间为:2

观察上面的代码变动,发现只有很少的部分修改了。

1、test函数上面添加了一行@process_time

2、test函数的调用方式发生了改变。

其他的并没有发生变化,整个代码看起来也更加清爽了。

提示:

当使用@装饰器时,会自动执行 闭包中的外部函数内容。这个可以自行验证。

当使用@装饰器时,Python解释器为我们做了什么?

当使用@装饰器时,Python解释器会将被装饰的函数作为参数传递给装饰器函数,并将其返回值作为新的函数对象替换原来的函数对象。这样,每次调用被装饰的函数时,实际上是调用了装饰器函数返回的新函数对象。

Python 装饰器 @ 实际上是一种语法糖,它可以让我们在不改变原函数代码的情况下,对函数进行扩展或修改。当我们使用 @ 装饰器时,实际上是将被装饰函数作为参数传递给装饰器函数,然后将装饰器函数的返回值赋值给原函数名。因此,@ 装饰器并不会进行内存拷贝。

通过下面的函数,可以得知,innertest函数指向的是同一个内存地址。

import time


def process_time(func):

    print("func id --->", id(func))

    def inner(*args, **kwargs):
        start_time = time.time()
        ret = func(*args, **kwargs)
        end_time = time.time()
        print("函数的执行时间为:%d" % (end_time - start_time))
        return ret

    print("inner id --->", id(inner))
    return inner


@process_time
def test(sleep_time):
    print("test func id --->", id(test))
    time.sleep(sleep_time)


print("test id --->", id(test))

执行结果:

func id ---> 4312377952
inner id ---> 4313983008
test id ---> 4313983008

使用语法糖时,Python解释器底层为我们做了这样的处理。

谈一谈Python中的装饰器

2.3 多个装饰器的执行顺序

上面的两个例子,都只有一个装饰器,是不是Python只能写一个装饰器呢。其实不是的。主要是为了讲解简单。接下来,我们一起来看看,多个装饰器的执行顺序。

def outer_1(func):
    print("coming outer_1")

    def inner_1():
        print("coming inner_1")
        func()
    return inner_1


def outer_2(func):
    print("coming outer_2")

    def inner_2():
        print("coming inner_2")
        func()

    return inner_2


def outer_3(func):
    print("coming outer_3")

    def inner_3():
        print("coming inner_3")
        func()

    return inner_3


@outer_1
@outer_2
@outer_3
def test():
    print("coming test")


test()

执行结果:

coming outer_3
coming outer_2
coming outer_1
coming inner_1
coming inner_2
coming inner_3
coming test

outer_3 -> outer_2 -> outer_1 -> inner_1 -> inner_2 -> inner_3 -> 被装饰函数

谈一谈Python中的装饰器

从上面的执行结果,可以得出如下结论:

使用多个装饰器装饰函数时,
外部函数的执行顺序是从下到上的。
内部函数的执行顺序是从下往上的。

多个装饰器装饰函数时,Python解释器底层做了啥

谈一谈Python中的装饰器

通过下面这段代码验证

def outer_1(func):
    print("coming outer_1, func id -->", id(func))

    def inner_1():
        print("coming inner_1")
        func()

    print("inner_1 id -->", id(inner_1))
    return inner_1


def outer_2(func):
    print("coming outer_2, func id -->", id(func))

    def inner_2():
        print("coming inner_2")
        func()

    print("inner_2 id -->", id(inner_2))
    return inner_2


def outer_3(func):
    print("coming outer_3, func id -->", id(func))

    def inner_3():
        print("coming inner_3")
        func()

    print("inner_3 id -->", id(inner_3))
    return inner_3


@outer_1
@outer_2
@outer_3
def test():
    print("coming test")


test()

执行结果:

coming outer_3, func id --> 4389102784
inner_3 id --> 4389102928
coming outer_2, func id --> 4389102928
inner_2 id --> 4389103072
coming outer_1, func id --> 4389103072
inner_1 id --> 4389103216
coming inner_1
coming inner_2
coming inner_3
coming test

2.4 带参数的装饰器

该如何实现带参数的装饰器呢,其实原理一样的,我们再定义一个外层函数,外层函数的返回值是内存函数的名称,即引用。

下面我们来看一个例子:

def is_process(flag):
    def outer_1(func):
        print("coming outer_1, func id -->", id(func))

        def inner_1():
            print("coming inner_1")
            if flag:
                func()

        print("inner_1 id -->", id(inner_1))
        return inner_1
    return outer_1


@is_process(True)
def test():
    print("coming test")


test()

注意:

  • 我们装饰函数时,装饰器的写法不同了,变成了@is_process(True),这里是调用了is_process这个函数

3、函数装饰器的注意点(wraps函数)

猜一猜下面函数会输出什么?

def outer_1(func):
    def inner_1():
        print("inner_1, func __name__", func.__name__)
        print("inner_1, func __doc__", func.__doc__)
        func()

    return inner_1


@outer_1
def test():
    """this is test"""
    print("outer_1, func __name__", test.__name__)
    print("outer_1, func __doc__", test.__doc__)


test()

函数执行结果:

inner_1, func __name__ test
inner_1, func __doc__ this is test
test, test __name__ inner_1
test, test __doc__ None

注意到没,在test函数体内打印函数的 __name__、__doc__ 属性,居然变成内部函数的了。

这个是为什么呢?

Python装饰器在装饰函数时,会将原函数的函数名、文档字符串、参数列表等属性复制到装饰器函数中,但是装饰器函数并不会复制原函数的所有属性。例如,原函数的name属性、doc属性、module属性等都不会被复制到装饰器函数中。

为了避免这种情况,可以使用functools库中的wraps装饰器来保留原来函数对象的属性。wraps装饰器可以将原来函数对象的属性复制到新的函数对象中,从而避免属性丢失的问题。

from functools import wraps


def outer_1(func):

    @wraps(func)
    def inner_1():
        print("inner_1, func __name__", func.__name__)
        print("inner_1, func __doc__", func.__doc__)
        func()

    return inner_1


@outer_1
def test():
    """this is test"""
    print("test, test __name__", test.__name__)
    print("test, test __doc__", test.__doc__)


test()

执行结果:

inner_1, func __name__ test
inner_1, func __doc__ this is test
test, test __name__ test
test, test __doc__ this is test

4、类装饰器

上面我们都是使用的函数来实现装饰器的功能,那可不可以用类来实现装饰器的功能呢?我们知道函数实现装饰器的原理是外部函数的参数是被装饰的函数,外部函数返回内部函数的名称。内部函数中去执行被装饰的函数。

那么其实类也是可以用来实现装饰器的,因为当我们为 类 定义了 __call__方法时,这个类就成了可调用对象,实例化后可直接调用。

class ProcessTime:

    def __call__(self, *args, **kwargs):
        print("call")


p = ProcessTime()
p()

4.1 类装饰器的实现

import time


class ProcessTime:

    def __init__(self, func):

        print("coming ProcessTime __init__")
        self.func = func

    def __call__(self, *args, **kwargs):
        start_time = time.time()
        print("coming ProcessTime __call__, id(self.func) -->", id(self.func))
        ret = self.func(*args, **kwargs)
        end_time = time.time()
        print("ProcessTime 函数的执行时间为:%d" % (end_time - start_time))
        return ret


@ProcessTime
def test(sleep_time):
    time.sleep(sleep_time)
    return "tet"


test(1)

执行结果:

coming ProcessTime __init__
coming ProcessTime __call__, id(self.func) --> 4488922160
ProcessTime 函数的执行时间为:1

通过上面的执行结果,我们可以得到,@ProcessTime的作用是 test = ProcessTime(test)。又因为 ProcessTime定义了__call__方法,是可调用对象,所以可以像函数那样直接调用实例化ProcessTime后的对象。

这里可以验证,通过注释掉装饰器,手动初始化ProcessTime类。得到的结果是一样的。

# @ProcessTime
def test(sleep_time):
    time.sleep(sleep_time)
    return "tet"


test = ProcessTime(test)
test(1)

4.2 多个类装饰器的执行顺序

多个类装饰器的执行顺序是怎么样的呢,这里我们也通过代码来进行验证。

import time


class ProcessTime:

    def __init__(self, func):

        print("coming ProcessTime __init__", id(self))
        self.func = func

    def __call__(self, *args, **kwargs):
        start_time = time.time()
        print("coming ProcessTime __call__, id(self.func) -->", id(self.func))
        ret = self.func(*args, **kwargs)
        end_time = time.time()
        print("ProcessTime 函数的执行时间为:%d" % (end_time - start_time))
        return ret


class ProcessTime2:

    def __init__(self, func):
        print("coming ProcessTime2 __init__", id(self))
        self.func = func

    def __call__(self, *args, **kwargs):
        start_time = time.time()
        print("coming ProcessTime2 __call__, id(self.func) -->", id(self.func))
        ret = self.func(*args, **kwargs)
        end_time = time.time()
        print("ProcessTime2 函数的执行时间为:%d" % (end_time - start_time))
        return ret


@ProcessTime
@ProcessTime2
def test(sleep_time):
    time.sleep(sleep_time)
    return "tet"


# test = ProcessTime2(test)
# test = ProcessTime(test)

t = test(1)

执行结果:

coming ProcessTime2 __init__ 4472235104
coming ProcessTime __init__ 4473162672
coming ProcessTime __call__, id(self.func) --> 4472235104
coming ProcessTime2 __call__, id(self.func) --> 4471735344
ProcessTime2 函数的执行时间为:1
ProcessTime 函数的执行时间为:1

从上面的结果,我们得到,执行顺序是:

ProcessTime2 中的__init__ -> ProcessTime 中的__init__ -> ProcessTime 中的__call__ -> ProcessTime2 中的__call__

特别注意:

ProcessTime 中的__call__ 中的代码并不会执行完后再去执行 ProcessTime2 中的__call__,而是在调用 ret = self.func(*args, **kwargs) 方法后,就回去执行 ProcessTime2 中的__call__的代码。

4.3 类装饰器存在的问题

其实,类装饰器也存在和函数装饰器一样的问题。它会覆盖原函数的元数据信息,例如函数名、文档字符串、参数列表等。这可能会导致一些问题,例如调试时无法正确显示函数名、文档生成工具无法正确生成文档等。

import time
from functools import wraps


class ProcessTime:

    def __init__(self, func):

        print("coming ProcessTime __init__", id(self))
        self.func = func

    def __call__(self, *args, **kwargs):
        start_time = time.time()
        print("coming ProcessTime __call__, id(self.func) -->", id(self.func))

        ret = self.func(*args, **kwargs)
        end_time = time.time()
        print("ProcessTime 函数的执行时间为:%d" % (end_time - start_time))
        return ret
        

@ProcessTime
def test(sleep_time):
    "tets"
    print("test.__doc__", test.__doc__)
    # print(test.__name__)  --> 报错,AttributeError: 'ProcessTime' object has no attribute '__name__'
    time.sleep(sleep_time)
    return "tet"
  

t = test(1)

那类装饰器该如何解决呢?

我现在还不知道该如何处理,如果有知道的朋友,请不吝赐教,十分感谢!!

5、多个装饰器的执行顺序总结

其实,我觉得不用特别的去记多个装饰器的执行顺序是如何的,我们最重要的是理解到装饰器的执行逻辑是如何的。函数装饰器和类装饰器的初始化顺序都是一样的:从靠近被装饰的函数开始执行初始化操作。把这个核心原理理解到后,多个装饰器的执行顺序在使用的时候,就很容易得到了。

谈一谈Python中的装饰器

原文链接:https://www.cnblogs.com/huageyiyangdewo/p/17322678.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:谈一谈Python中的装饰器 - Python技术站

(0)
上一篇 2023年4月17日
下一篇 2023年4月17日

相关文章

  • Python常用内置函数的使用教程详解

    Python常用内置函数的使用教程详解 Python是一种非常强大的编程语言,其内置了许多有用的函数,这些函数可以帮助我们更加高效地编写程序。本文将介绍Python内置函数的使用方法,以及一些常见的例子。 Python内置函数 Python的内置函数可以帮助我们完成各种任务,包括数学计算、字符串处理、列表和字典等容器的操作,还可以帮助我们进行文件IO操作等。…

    python 2023年5月14日
    00
  • python 实现倒排索引的方法

    下面是 “Python 实现倒排索引的方法” 的完整攻略: 什么是倒排索引 倒排索引(Inverted Index)是一种常用于全文搜索引擎的数据结构。它是一个字符串到文档列表的映射,也就是说,对于一个包含了若干文本的文档集合,我们可以建立一个由每个单词(或者字符)指向包含它的文档列表的索引。 倒排索引可以使检索速度更快,因为我们可以先对查询进行处理,然后只…

    python 2023年6月5日
    00
  • iOS开发中使用NSURLConnection类处理网络请求的方法

    处理网络请求是 iOS 开发中非常常见的任务之一。NSURLConnection 类是 iOS 开发中用于处理网络请求的基础类之一,本文将为大家详细介绍 iOS 开发中使用 NSURLConnection 的方法。 NSURLConnection 的基本使用 NSURLConnection 是一个基于代理机制的异步请求类,通常使用下面的代码进行网络请求: N…

    python 2023年5月23日
    00
  • 一个简单的python程序实例(通讯录)

    下面是一个关于”一个简单的python程序实例(通讯录)”的详细攻略。 1. 编写程序的思路 了解需求,定义数据 编写添加联系人功能 编写查找联系人功能 编写删除联系人功能 编写修改联系人功能 编写程序菜单 测试程序 2. 完整的程序代码 # 定义一个通讯录变量 contact_list = [] def add_contact(): # 添加联系人信息 n…

    python 2023年5月19日
    00
  • 用python3 返回鼠标位置的实现方法(带界面)

    这是一个用Python3实现返回鼠标位置的方法。这个方法可以直接在Python的交互式环境(例如IPython)中运行并且可以带GUI界面输出。 步骤1 准备工作 需要导入Python的Tkinter库。Tkinter是Python的标准GUI库,可以实现跨平台的应用程序窗口和对话框,以及GUI元素如按钮、标签、文本区域、下拉列表等等。可以通过以下命令导入T…

    python 2023年6月13日
    00
  • 详解Python 生成器表达式

    生成器表达式是Python编程语言中用于创建迭代器的一种方法,使用它可以避免在内存中存储所有生成的值而是逐个生成值。这种方法可以大大减少内存使用。 生成器表达式的语法格式 生成器表达式的语法格式类似于列表推导式,但使用圆括号括起来代替方括号。具体语法格式如下: (表达式 for 变量 in 可迭代对象 [if 判断语句]) 使用方法 使用生成器表达式需要以下…

    python-answer 2023年3月25日
    00
  • python将字典列表导出为Excel文件的方法

    想要将Python中的字典列表导出为Excel文件,在Python中可以使用第三方库Pandas来实现,以下是详细的攻略: 安装Pandas 在终端中输入以下命令安装Pandas: pip install pandas 导入所需库 在Python中导入需要使用的库 import pandas as pd 创建字典列表 首先,我们需要创建一个包含一些字典的列表…

    python 2023年5月13日
    00
  • Python获取二维数组的行列数的2种方法

    下面是Python获取二维数组的行列数的两种方法: 方法一:使用numpy库 numpy是Python中一个常用的科学计算库,可以方便地处理矩阵和数组等数学结构。 要使用numpy获取二维数组的行列数,可以使用shape属性。shape是返回一个元组,表示数组的维度,其中第一个值为行数,第二个值为列数。 以下是示例代码: import numpy as np…

    python 2023年6月5日
    00
合作推广
合作推广
分享本页
返回顶部