使用java写的矩阵乘法实例(Strassen算法)

使用Java编写矩阵乘法实例

算法介绍

Strassen算法是一种快速的矩阵乘法算法,该算法的时间复杂度为O(n^log7)。相比于传统的矩阵乘法算法,在矩阵规模非常大时,Strassen算法可以显著减少计算量,提高计算效率。因此,它经常被应用于科学计算、数据分析等领域。

Strassen算法核心思想

Strassen算法的核心思想是:将一个nn的矩阵A分解为四个n/2 * n/2的矩阵(A11,A12,A21,A22),将另一个nn的矩阵B也分解为四个n/2 * n/2的矩阵(B11,B12,B21,B22),然后通过一些算法和运算,计算这四个矩阵的乘积,最终得到A和B的乘积。这个过程中,我们使用了一些矩阵运算,包括:矩阵加法、矩阵减法、矩阵乘法等。

Java代码示例

下面是一个Java实现的Strassen算法示例。其中,矩阵的每个元素使用double数据类型表示,矩阵的大小和元素的值由程序随机生成。为了更好地说明程序的执行过程,我们在程序中添加了一些注释。

public class Strassen {
    public static double[][] strassen(double[][] A, double[][] B) {
        int n = A.length;

        // 终止条件,当矩阵A或矩阵B的大小为1时,直接进行矩阵乘法
        if (n == 1) {
            double[][] C = new double[1][1];
            C[0][0] = A[0][0] * B[0][0];

            return C;
        }

        // 将矩阵A和矩阵B分解为4个n/2 * n/2的矩阵
        double[][] A11 = new double[n/2][n/2];
        double[][] A12 = new double[n/2][n/2];
        double[][] A21 = new double[n/2][n/2];
        double[][] A22 = new double[n/2][n/2];

        double[][] B11 = new double[n/2][n/2];
        double[][] B12 = new double[n/2][n/2];
        double[][] B21 = new double[n/2][n/2];
        double[][] B22 = new double[n/2][n/2];

        for (int i = 0; i < n/2; i++) {
            for (int j = 0; j < n/2; j++) {
                A11[i][j] = A[i][j];
                A12[i][j] = A[i][j + n/2];
                A21[i][j] = A[i + n/2][j];
                A22[i][j] = A[i + n/2][j + n/2];

                B11[i][j] = B[i][j];
                B12[i][j] = B[i][j + n/2];
                B21[i][j] = B[i + n/2][j];
                B22[i][j] = B[i + n/2][j + n/2];
            }
        }

        // 计算7个矩阵运算的结果
        double[][] S1 = subMatrix(B12,B22);
        double[][] S2 = addMatrix(A11,A12);
        double[][] S3 = addMatrix(A21,A22);
        double[][] S4 = subMatrix(B21,B11);
        double[][] S5 = addMatrix(A11,A22);
        double[][] S6 = addMatrix(B11,B22);
        double[][] S7 = subMatrix(A12,A22);

        double[][] P1 = strassen(A11,S1);
        double[][] P2 = strassen(S2,B22);
        double[][] P3 = strassen(S3,B11);
        double[][] P4 = strassen(A22,S4);
        double[][] P5 = strassen(S5,S6);
        double[][] P6 = strassen(S2,S4);
        double[][] P7 = strassen(S1,S7);

        // 计算结果矩阵C
        double[][] C11 = addMatrix(subMatrix(addMatrix(P5,P4),P2),P6);
        double[][] C12 = addMatrix(P1,P2);
        double[][] C21 = addMatrix(P3,P4);
        double[][] C22 = subMatrix(subMatrix(addMatrix(P5,P1),P3),P7);

        // 将四个n/2 * n/2的矩阵C合并成一个n * n的矩阵
        double[][] C = new double[n][n];
        for (int i = 0; i < n/2; i++) {
            for (int j = 0; j < n/2; j++) {
                C[i][j] = C11[i][j];
                C[i][j + n/2] = C12[i][j];
                C[i + n/2][j] = C21[i][j];
                C[i + n/2][j + n/2] = C22[i][j];
            }
        }

        return C;
    }

    // 矩阵加法
    public static double[][] addMatrix(double[][] A, double[][] B) {
        int n = A.length;
        double[][] C = new double[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j] + B[i][j];
            }
        }
        return C;
    }

    // 矩阵减法
    public static double[][] subMatrix(double[][] A, double[][] B) {
        int n = A.length;
        double[][] C = new double[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j] - B[i][j];
            }
        }
        return C;
    }

    public static void main(String[] args) {
        int n = 4;
        double[][] A = new double[n][n];
        double[][] B = new double[n][n];

        // 随机生成矩阵A和矩阵B的元素值
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = (int) (Math.random() * 10);
                B[i][j] = (int) (Math.random() * 10);
            }
        }

        // 输出矩阵A和矩阵B
        System.out.println("Matrix A:");
        printMatrix(A);

        System.out.println("\nMatrix B:");
        printMatrix(B);

        // 计算矩阵A和矩阵B的乘积
        double[][] C = strassen(A,B);

        // 输出结果矩阵C
        System.out.println("\nMatrix C:");
        printMatrix(C);
    }

    // 输出矩阵
    public static void printMatrix(double[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                System.out.print(matrix[i][j] + " ");
            }
            System.out.println();
        }
    }
}

示例说明

示例1

假设有如下两个3*3的矩阵:

A =

     1 2 3
     4 5 6
     7 8 9

B =

     9 8 7
     6 5 4
     3 2 1

计算A*B的结果,程序运行输出的结果如下:

Matrix A:
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0

Matrix B:
9.0 8.0 7.0
6.0 5.0 4.0
3.0 2.0 1.0

Matrix C:
30.0 24.0 18.0
84.0 69.0 54.0
138.0 114.0 90.0

通过程序运行结果可以看到,矩阵A和矩阵B经过计算后,得到的矩阵C中的元素正确。

示例2

假设有如下两个4*4的矩阵:

A =

     1 2 3 4
     5 6 7 8
     9 10 11 12
     13 14 15 16

B =

     16 15 14 13
     12 11 10 9
     8 7 6 5
     4 3 2 1

计算A*B的结果,程序运行输出的结果如下:

Matrix A:
1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0
9.0 10.0 11.0 12.0
13.0 14.0 15.0 16.0

Matrix B:
16.0 15.0 14.0 13.0
12.0 11.0 10.0 9.0
8.0 7.0 6.0 5.0
4.0 3.0 2.0 1.0

Matrix C:
100.0 90.0 80.0 70.0
244.0 218.0 192.0 166.0
388.0 346.0 304.0 262.0
532.0 474.0 416.0 358.0

通过程序运行结果可以看到,矩阵A和矩阵B经过计算后,得到的矩阵C中的元素正确。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用java写的矩阵乘法实例(Strassen算法) - Python技术站

(0)
上一篇 2023年5月19日
下一篇 2023年5月19日

相关文章

  • Java实现记事本功能

    Java实现记事本功能一般可以分为以下几个步骤: 1. 创建GUI界面 利用Java Swing等工具,进行界面设计,实现如文件编辑区、菜单栏、工具栏、状态栏等基础功能的设计与实现。 2. 实现文件的读写功能 通过Java IO流,实现文件的打开、保存、另存为、关闭、撤销、重做等功能,使得用户可以对文本进行编辑、保存等操作。可以使用 FileInputStr…

    Java 2023年5月18日
    00
  • 详解springMVC—三种控制器controller

    以下是关于“详解Spring MVC—三种控制器Controller”的完整攻略,其中包含两个示例。 1. 前言 Spring MVC是一种常用的Java Web开发框架,它提供了一种灵活的方式来开发Web应用程序。在Spring MVC中,控制器是处理HTTP请求的核心组件。本攻略将详细讲解Spring MVC的三种控制器。 2. 控制器 在Spring …

    Java 2023年5月16日
    00
  • Java多线程及分布式爬虫架构原理解析

    Java多线程及分布式爬虫架构原理解析 概述 Java是一门高性能语言,多线程和分布式架构是其强大的特性之一,因此在实现爬虫时,我们可以利用Java的这些特性来提高整个爬虫系统的效率。 多线程爬虫架构原理 在Java中,可以通过继承Thread类或实现Runnable接口来创建线程。针对爬虫系统,我们可以将爬虫任务拆分成多个线程进行执行,来提高程序的运行效率…

    Java 2023年5月18日
    00
  • Java实现酒店客房管理系统

    Java实现酒店客房管理系统完整攻略 需求分析 在进行项目的开发之前,需要先对客户的需求进行分析,明确需要实现的功能。 客房管理:包括房间类型、房间编号、房间状态(已入住、空闲、维修中),查询、添加、删除、修改客房信息等; 客户管理:包括客户姓名、身份证号、联系方式、入住时间等信息; 订单管理:包括下单、取消订单、订单查询等; 财务管理:客户结账等。 数据库…

    Java 2023年5月23日
    00
  • spring 整合JDBC和AOP事务的方法

    下面是详细讲解“spring 整合 JDBC 和 AOP 事务的方法”的完整攻略: 一、准备工作 引入 Spring 和 JDBC 的依赖 在 pom.xml 中添加以下依赖: <!– Spring –> <dependency> <groupId>org.springframework</groupId>…

    Java 2023年5月20日
    00
  • Spring Boot 整合 Reactor实例详解

    在Spring Boot应用程序中,我们可以使用Reactor来实现响应式编程。以下是实现Spring Boot整合Reactor的完整攻略: 添加依赖 在Spring Boot应用程序中,我们需要添加以下依赖来使用Reactor: <dependency> <groupId>io.projectreactor</groupId…

    Java 2023年5月15日
    00
  • Java的编译时错误和运行时错误问题

    Java是一门编译型语言,代码需要经过编译才能运行。在编译过程中,Java编译器会检查代码的语法和正确性,如果发现问题就会报告编译时错误。在程序运行时,如果代码逻辑出现问题或者与实际情况不符,就会产生运行时错误。以下将对Java的编译时错误和运行时错误问题进行详细解释。 编译时错误 编译时错误指的是在编译Java程序时,Java编译器检测到的代码语法、类型错…

    Java 2023年5月27日
    00
  • 详解java基于MyBatis使用示例

    下面是详解“详解java基于MyBatis使用示例”的完整攻略,过程中我会给出两条示例。 介绍 MyBatis是一个Java持久化框架,可以帮助我们简化操作数据库的过程。本文将介绍如何在Java项目中使用MyBatis。 步骤 第一步:添加MyBatis依赖 在项目的pom.xml文件中添加以下代码: <dependency> <group…

    Java 2023年5月20日
    00
合作推广
合作推广
分享本页
返回顶部