数据清洗的步骤是什么?

数据清洗(Data cleaning)是指通过对数据进行处理和筛选,使数据更加符合使用需求的过程。数据清洗的目的是为了保证数据质量,提高数据的可靠性和实用性。下面是数据清洗的基本步骤和攻略:

  1. 收集数据:获取待清洗的数据,包括从数据库、文本、Excel等不同来源。

  2. 处理缺失值:检查并清除数据中的缺失值。常用方法有平均值、中心值,也可以选择直接将缺失值删除。

  3. 处理异常值:通过检查数据分布、统计学方法、图表等方式,找出异常值并进行处理。处理方法可以是删除异常值,也可以是用其他合理值代替异常值。

  4. 处理重复值:去除数据集中的重复值。可以使用Excel工具进行去重,也可编写代码实现。

  5. 处理错误数据:通过对数据的逻辑性和一致性进行分析,找出错误数据。根据错误数据的类别不同,采用不同的处理方法,比如替换、删除、修正等。

  6. 统一格式:将不统一的数据格式进行统一,包括大小写、单位、日期格式等。

  7. 数据转换:将原始数据转换成可分析和可处理的格式。例如将图片转换为数字矩阵。

示例一:

某市公安局统计每日上班人数,收集到的数据有重复值。通过调研发现,重复值来自于一些数据输入错误,同一人名采入两次等。清洗步骤如下:

  1. 删除重复值。采用“Ctrl+Shift+End”快捷键选中全部数据,选择“数据”菜单下的“删除重复项”,选择“姓名”和“时间”为关键内容。

  2. 检查数据异常值。选择图表菜单,然后选择合适的图表,对数据分布情况进行分析,找出异常数据并进行处理。

示例二:

某网站上的用户数据,统计结果发现有缺失值。清洗步骤如下:

  1. 检查缺失值。通过程序脚本计算,统计出缺失值的数量、所在行列,判断缺失值是否可行,未检查出问题之前不直接删除。

  2. 分析缺失值。判断缺失值出现的原因,可能是数据未采集到,或者是采集有误等,根据原因采取不同的处理方法。

  3. 填充缺失值。如果缺失值数量较少,可以采用平均数、中位数等统计方法进行填充,对于大量缺失值的,可以选择删除对应的行列,或者是进行矫正。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:数据清洗的步骤是什么? - Python技术站

(0)
上一篇 2023年4月19日
下一篇 2023年4月19日

相关文章

  • 大数据和数据科学的区别

    当我们在处理数据时,通常会使用“大数据”和“数据科学”的术语。虽然它们之间存在重叠,但它们具有不同的意义和聚焦点。 大数据 “大数据”是一个用于描述数据集大小的术语,它指的是具有以下属性的数据:数据的大小远远超过了可一次性处理的存储和计算能力;数据可以是结构化、半结构化或非结构化的;它可以从任何数据源收集,包括数据交换、监视、日志记录、传感器等。 大数据的功…

    bigdata 2023年3月27日
    00
  • 大数据平台的数据来源

    大数据平台的数据来源可以分为内部数据和外部数据两类。 1. 内部数据 内部数据是指企业自身产生的数据,例如公司内部的业务数据、客户数据等。这类数据来源比较简单,通常包括以下几个步骤: 1.1 数据采集 数据采集是指通过多种手段获取内部数据,例如从企业存在的各类信息系统中的抓取数据,或在数据库中提取数据等。一般情况下,企业应该使用 ETL 工具或自己开发的数据…

    bigdata 2023年3月27日
    00
  • 什么是数据预处理?

    什么是数据预处理? 在进行数据分析时,数据预处理是一个必需的步骤。数据预处理用于清理、转换和规范数据,以使其能够更好地用于分析和建模。数据预处理可能包含以下步骤: 数据清洗:去除无用、重复和错误数据、补充缺失数据等。 数据转换: 将原始数据进行变换、标准化、离散化等操作,以便于数据挖掘和分析。 数据集成:从多个数据源中提取数据,并将它们整合在一个数据存储库中…

    大数据 2023年4月19日
    00
  • 数据仓库和数据挖掘的区别

    数据仓库和数据挖掘的区别 数据仓库 数据仓库是指一个集中、稳定、历史悠久、可供决策支持系统使用的数据管理系统,是一个分离于操作性系统的应用系统,按照主题维度对企业中分散、分散、分级存放的数据进行整合、清洗、转换和统一,得到的结构化、标准化的数据信息集合。从而为企业提供决策支持信息,提升企业决策水平,辅助企业发掘更多业务机会。 数据仓库通常具有以下特点: 面向…

    bigdata 2023年3月27日
    00
  • 数据分析中如何处理缺失值和异常值?

    在数据分析中,缺失值和异常值都是常见的问题,需要进行有效的处理才能得到准确的分析结果。 下面分别针对缺失值和异常值进行详细讲解。 处理缺失值 什么是缺失值 缺失值是指数据集中某些观测值没有收集到或者遗漏了。在不同的数据集中,缺失值可能表现为不同的形式,比如空值、NaN、-1等等。 缺失值的影响 在数据分析中,缺失值可能会对结果造成影响,导致结果不准确或者出现…

    大数据 2023年4月19日
    00
  • 数据挖掘和网络挖掘的区别

    数据挖掘(Data Mining)和网络挖掘(Web Mining)是两个不同的概念。在介绍它们的区别之前,先介绍一下它们的含义。 数据挖掘是指对大量数据中的信息进行自动或半自动的提取和分析的过程,以发现其中的有用模式和知识,从而帮助人们做出更准确的决策。数据挖掘可以应用在各种领域,如金融、医疗和商业等。 网络挖掘是指对互联网中的信息进行提取和分析的过程,以…

    bigdata 2023年3月27日
    00
  • 人工智能中的常用技术有哪些?

    人工智能中的常用技术 人工智能是关注机器智能的一门领域,其中有许多常用技术可以被应用到各种方向的领域。下面是一些常见的人工智能技术。 1. 机器学习 机器学习是一种让计算机从数据中自动学习的方法,它采用各种算法,让计算机在不断的实践过程中不断得到改进,并可以被应用到各种领域中。机器学习算法包括分类、聚类和回归等,这些算法在图像识别和语音识别中得到了很好的应用…

    大数据 2023年4月19日
    00
  • 什么是数据清理?为什么说清理数据非常重要?

    根据早期的大数据行业的调查发现,数据科学家工作中“最难受”的方面是数据清理,这占据了他们约60%的时间。 即使在近几年,数据清理仍是数据科学家耗时较长的工作内容。虽然2020年进行的一项调查显示出现在只将约45%的时间用于数据清理等数据准备工作,但这仍然表明,数据清理依然是个令人头疼的问题。 大多数人都同意,我们在使用数据时,您的见解和分析的质量与您所使用的…

    2022年11月19日
    00
合作推广
合作推广
分享本页
返回顶部