数据清洗的步骤是什么?

数据清洗(Data cleaning)是指通过对数据进行处理和筛选,使数据更加符合使用需求的过程。数据清洗的目的是为了保证数据质量,提高数据的可靠性和实用性。下面是数据清洗的基本步骤和攻略:

  1. 收集数据:获取待清洗的数据,包括从数据库、文本、Excel等不同来源。

  2. 处理缺失值:检查并清除数据中的缺失值。常用方法有平均值、中心值,也可以选择直接将缺失值删除。

  3. 处理异常值:通过检查数据分布、统计学方法、图表等方式,找出异常值并进行处理。处理方法可以是删除异常值,也可以是用其他合理值代替异常值。

  4. 处理重复值:去除数据集中的重复值。可以使用Excel工具进行去重,也可编写代码实现。

  5. 处理错误数据:通过对数据的逻辑性和一致性进行分析,找出错误数据。根据错误数据的类别不同,采用不同的处理方法,比如替换、删除、修正等。

  6. 统一格式:将不统一的数据格式进行统一,包括大小写、单位、日期格式等。

  7. 数据转换:将原始数据转换成可分析和可处理的格式。例如将图片转换为数字矩阵。

示例一:

某市公安局统计每日上班人数,收集到的数据有重复值。通过调研发现,重复值来自于一些数据输入错误,同一人名采入两次等。清洗步骤如下:

  1. 删除重复值。采用“Ctrl+Shift+End”快捷键选中全部数据,选择“数据”菜单下的“删除重复项”,选择“姓名”和“时间”为关键内容。

  2. 检查数据异常值。选择图表菜单,然后选择合适的图表,对数据分布情况进行分析,找出异常数据并进行处理。

示例二:

某网站上的用户数据,统计结果发现有缺失值。清洗步骤如下:

  1. 检查缺失值。通过程序脚本计算,统计出缺失值的数量、所在行列,判断缺失值是否可行,未检查出问题之前不直接删除。

  2. 分析缺失值。判断缺失值出现的原因,可能是数据未采集到,或者是采集有误等,根据原因采取不同的处理方法。

  3. 填充缺失值。如果缺失值数量较少,可以采用平均数、中位数等统计方法进行填充,对于大量缺失值的,可以选择删除对应的行列,或者是进行矫正。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:数据清洗的步骤是什么? - Python技术站

(0)
上一篇 2023年4月19日
下一篇 2023年4月19日

相关文章

  • 图像处理中的常用技术有哪些?

    图像处理中的常用技术 在图像处理中,常用技术可以分为以下几类: 图像增强 图像增强是将原始图像转换为高质量图像的一种处理技术,旨在增强图像的特征、对比度或清晰度等等。常用的图像增强技术包括: 直方图均衡化 直方图均衡化是一种通过重建图像直方图来增强图像的对比度的方法。其基本思想是使得图像中像素值的概率密度函数在灰度范围内尽量均匀地分布,从而达到增强图像的视觉…

    大数据 2023年4月19日
    00
  • 数据仓库和操作数据库的区别

    数据仓库和操作数据库的区别 在计算机科学领域中,数据仓库和操作数据库是两个重要的概念。虽然它们都涉及到处理和存储数据,但在很多方面,它们的目标和使用场景都有所不同。 数据仓库 数据仓库是一种用于分析和决策支持的数据存储解决方案。它用于存储大量历史数据,数据仓库的设计是为了支持对这些数据进行复杂的分析,允许用户发现数据之间的关系,确定趋势和模式,并支持高级的数…

    bigdata 2023年3月27日
    00
  • 预测用户喜好的推荐算法

    推荐系统是一项能够预测用户喜好,将其推荐给用户的技术。推荐系统是多种技术的结合体,包括机器学习、数据挖掘、人工智能等。其中,预测用户喜好的推荐算法是推荐系统中最核心的部分之一。这里为你提供一份完整的攻略,帮助你了解预测用户喜好的推荐算法。 1. 收集数据 推荐算法的第一步是收集数据。收集数据是建立一个推荐系统的基础。你需要建立一个数据收集框架,从用户那里获取…

    bigdata 2023年3月27日
    00
  • 传统数据和大数据的区别

    传统数据与大数据的区别 在介绍传统数据和大数据的区别之前,我们需要先了解以下几个概念: 1. 传统数据 传统数据是指以前所采用的存储、处理数据的方式。它主要存在以下几个特征: 数据量相对较小,数量级通常在GB级别内; 数据结构比较简单,大多数采用关系型数据库存储; 数据分析主要基于统计分析或简单的数据挖掘技术; 数据更新比较慢,通常是每天或每周更新一次。 2…

    bigdata 2023年3月27日
    00
  • MapR平台和Cloudera平台的区别

    作为大数据处理领域的两个主要开源平台,MapR和Cloudera都具有广泛的应用。两者在架构和功能上有很多相似之处,但同时也有不同之处。下面从不同角度详细讲解MapR平台和Cloudera平台的区别。 1. 架构和部署方式 MapR平台和Cloudera平台在架构和部署方式上有区别。MapR具有自主研发的分布式文件系统,MapR-FS,这是MapR的核心功能…

    bigdata 2023年3月27日
    00
  • 大数据中的数据湖是什么?一文了解!

    数据湖是当今存储系统中引起广泛关注的概念。它也不同于数据仓库。许多人不熟悉“数据湖”一词,因此他们会寻找定义。不过,这个词想必之前参与数据实践的人都知道。 公司越来越多地将公司数据存储在数据湖中。然而,数据混乱可能是由以不同格式存储大量数据造成的!让我们来看看数据湖的优缺点。 什么是数据湖? 将 Data Lake 想象成一个相当大的容器,它充当存储库,能够…

    2023年2月5日
    00
  • 数据分析中常用的统计方法有哪些?

    统计方法是数据分析中非常重要的一部分。在数据分析中,我们可以使用统计方法来推断总体信息,并在一定程度上预测未来的趋势。常见的统计方法有以下几种: 描述统计 描绘数据的基本特征,包括均值、中位数、众数、方差、标准差、百分位数等。描述统计是研究数据单独存在的一个分支,通过对数据的描述可以了解数据的基本特征。 推断统计 通过样本来推断总体的参数,包括假设检验、置信…

    大数据 2023年4月19日
    00
  • 数据分析的应用范围有哪些?

    数据分析是指通过收集、处理、分析和解释数据,从而获取有用信息并做出决策的过程。数据分析的应用范围十分广泛,包括但不限于以下几个领域: 1. 商业智能(Business Intelligence) 商业智能是指利用数据分析技术来对企业或组织进行全面地、系统地分析,从而为决策提供支持的过程。这个领域的典型应用包括了对销售、运营、市场和财务等方面的数据进行分析和挖…

    大数据 2023年4月19日
    00
合作推广
合作推广
分享本页
返回顶部