详解Pandas随机抽样(sample)使用方法

Pandas中的sample()函数可以从数据集中随机抽取行或列,可以用于数据集的随机采样、创建数据集的随机子集、模型评估等场景。下面我们来详细介绍一下sample()函数的用法。

首先,sample()函数有以下几个参数:

  • n: 抽取的行数或列数。
  • frac: 抽取的行数或列数相对于数据集的比例,范围在0到1之间。
  • replace: 是否允许重复抽取,默认为False。
  • weights: 可以为每个行或列设置权重,以便更有可能抽取它们。
  • random_state: 随机数种子,以确保每次抽样结果的一致性。

下面是一些常见的用法示例:

import pandas as pd

# 读取数据集
df = pd.read_csv('data.csv')

# 从数据集中随机抽取10行
sample_df = df.sample(n=10)

# 从数据集中随机抽取20%的行
sample_df = df.sample(frac=0.2)

# 允许重复抽取
sample_df = df.sample(n=10, replace=True)

# 为每个行设置不同的权重,以便更有可能抽取它们
weights = [0.1, 0.2, 0.3, 0.4]
sample_df = df.sample(n=10, weights=weights)

# 设置随机数种子,以确保每次抽样结果的一致性
sample_df = df.sample(n=10, random_state=42)

在这个例子中,我们首先使用pd.read_csv()函数读取一个名为data.csv的数据集。

然后,我们使用sample()函数从数据集中随机抽取一些行或列,并将结果存储在sample_df变量中。

在第一个例子中,我们抽取了10行数据;
在第二个例子中,我们抽取了20%的行;
在第三个例子中,我们允许重复抽取;
在第四个例子中,我们为每个行设置了不同的权重;
在第五个例子中,我们设置了随机数种子,以确保每次抽样结果的一致性。

值得注意的是,sample()函数可以用于Series和DataFrame对象。如果要对DataFrame进行抽样,可以通过指定axis参数来指定抽取行或列。例如,要从DataFrame中随机抽取3列,可以这样做:

sample_df = df.sample(n=3, axis=1)

在这个例子中,我们设置了axis=1,表示我们要从DataFrame的列中进行抽样。最后,我们从DataFrame中抽取了3列数据,并将结果存储在sample_df变量中。

此文章发布者为:Python技术站作者[metahuber],转载请注明出处:http://pythonjishu.com/pandas-sample-used/

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023年 3月 6日 下午9:35
下一篇 2023年 3月 7日 下午3:07

相关推荐

  • Pandas 执行类似SQL操作的4种方法

    Pandas是数据处理中不可或缺的工具之一,除了数据的读写、清洗、转换等基本操作,Pandas还支持一些类似SQL的操作,而这些操作对于熟悉SQL的用户来说,极大地方便了数据的操作和分析。 Pandas提供的SQL类操作主要包括以下几种方法: merge: 将两个DataFrame按照指定的列进行合并(类似于SQL中的join操作)。 groupby: 对D…

    Pandas 2023年 3月 7日
    00
  • Pandas Series对象常用的属性和方法

    Pandas Series对象是一维标签数组,主要用于存储不同数据类型的数据。 Series常用属性 下面我们介绍 Series 的常用属性和方法。在下表列出了 Series 对象的常用属性。 名称 属性 index 返回一个Index对象,代表Series的索引。 values 返回一个numpy数组,代表Series的值。 dtype 返回Series中…

    Pandas 2023年 3月 4日
    00
  • Pandas处理缺失值的4种方法

    什么是缺失值 在实际数据分析过程中,经常会遇到一些数据缺失的情况,这种情况可能是由于以下原因导致的: 数据收集的不完整:有些数据可能由于各种原因无法获取或者未收集到。 数据输入错误:数据收集者可能会犯一些输入错误,例如遗漏一些数据或者输入了一些不正确的数据。 数据处理错误:数据处理过程中可能会犯一些错误,例如计算错误或者数据合并错误等。 数据保存错误:数据保…

    Pandas 2023年 3月 5日
    00
  • 详解Pandas中的时间序列

    Pandas是一个强大的数据分析工具,它的时间序列处理功能也非常强大。Pandas提供了一些专门用于处理时间序列的数据类型和函数,能够方便地对时间序列数据进行处理和分析。 下面将详细介绍Pandas时间序列的相关知识。 DatetimeIndex 在Pandas中,DatetimeIndex是一个表示时间序列的数据类型,它能够方便地对时间序列进行索引和切片操…

    Pandas 2023年 3月 6日
    10
  • Pandas 格式化日期时间

    当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,就需要对日期时间做统一的格式化处理。 比如“Wednesday, June 6, 2023”可以写成“6/6/23”,或“06-06-2023”。 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。…

    Pandas 2023年 3月 6日
    00
  • 详解Pandas分层索引的创建、使用方法

    Pandas分层索引是一种在DataFrame和Series中使用的索引技术,能够处理多维数据,使得对于数据的分组和展示更加方便和灵活。在分层索引中,每层索引都是针对数据集中的某个特定维度的,这些层次索引可以根据需要自由组合,形成多级索引,从而满足数据分析任务的细粒度需求。 Pandas分层索引的创建方式 1.通过列表创建分层索引: import panda…

    Pandas 2023年 3月 7日
    00
  • Pandas DataFrame结构对象常用的属性和方法

    Pandas DataFrame是一个二维表结构,包含了行和列的标签,每一列可以有不同的数据类型。 以下是Pandas DataFrame结构对象常用的属性和方法: DataFrame结构对象属性 DataFrame对象常用的属性有: shape:返回DataFrame的形状(行数、列数) index:返回DataFrame的行索引 columns:返回Da…

    Pandas 2023年 3月 4日
    00
  • Pandas描述性统计常用的方法

    什么是描述性统计? 描述统计学(descriptive statistics)是一门统计学领域的学科,是一种利用某些指标对数据进行概括和描述的一种统计方法。 描述性统计通过统计数据的集中趋势、离散程度、分布形态、相关性等特征来描述数据的基本情况和规律,常用于数据分析、数据挖掘、商业分析等领域。常见的描述性统计指标包括均值、中位数、标准差、方差、极差、四分位数…

    Pandas 2023年 3月 4日
    00
  • 详解Padans Timedelta时间差的使用方法

    在 Pandas 中,时间差指的是两个日期时间之间的差值。Pandas 提供了 Timedelta 类型来表示时间差。Timedelta 可以支持多种时间单位,例如天、小时、分钟、秒等。 Timedelta 对象可以通过减法来获得两个日期时间之间的差值,例如: import pandas as pd # 创建两个 Pandas Series 对象 s1 = …

    Pandas 2023年 3月 6日
    00
  • Pandas最常用的4种窗口函数

    Pandas窗口函数(Window Function)是一种基于滑动窗口的函数,用于在序列或数据框上执行基于窗口的操作,如滚动平均、滚动求和、滚动方差等。 与一般的聚合函数不同,窗口函数可以计算滑动窗口内的值,并生成与原序列或数据框相同长度的序列或数据框。 接下来将为你介绍Pandas中常用的4种窗口函数。 滚动平均值 滚动平均值是指在滑动窗口内计算平均值。…

    Pandas 2023年 3月 5日
    00