人工智能
-
(实战篇)用Python识别手写数字
我们使用 Scikit-learn 库实现一个简单的深度学习训练示例,训练目标为:识别手写数字。 以下是实现手写数字识别的完整示例代码: from sklearn import datasets from sklearn import svm from sklearn.model_selection import train_test_split from …
-
自然语言处理神经网络模型入门概述
深度学习对自然语言处理领域产生了巨大影响。 但是,作为初学者,您从哪里开始? 深度学习和自然语言处理都是一个巨大的领域。每个领域需要关注的突出方面是什么,深度学习对NLP的哪些领域影响最大? 在这篇文章中,您将发现有关自然语言处理深度学习相关的入门知识。 阅读这篇文章后,您将知道: 对自然语言处理领域影响最大的神经网络架构。 可以通过深度学习成功解决的自然语…
-
(实战篇)从头开发机器翻译系统!
在本文中,您将学习如何使用 Keras 从头开发一个深度学习模型,自动从德语翻译成英语。 机器翻译是一项具有挑战性的任务,传统上涉及使用高度复杂的语言知识开发的大型统计模型。 在本教程中,您将了解如何开发用于将德语短语翻译成英语的神经机器翻译系统。 完成本教程后,您将了解: 如何清理和准备数据以训练神经机器翻译系统。 如何为机器翻译开发编码器-解码器模型。 …
-
(实战篇)使用Python清理机器学习的文本数据
在自然语言处理(NLP)的过程中,我们不可能直接从原始文本转到拟合机器学习或深度学习模型,我们必须要首先清理文本,这意味着将其拆分为单词并处理标点符号和大小写。 事实上,您可能需要使用一整套文本准备方法,方法的选择实际上取决于您的自然语言处理任务。 在本教程中,您将了解如何清理和准备文本,以便使用机器学习进行建模。具体内容如下: 从如何通过开发自己的非常简单…
-
TensorFlow 是什么?有什么作用?
谷歌大脑团队在 2011 年启动了一个项目,目的是探索超大规模深度神经网络的服务,并应用于谷歌产品的研究和部署以提高谷歌的服务性能。 在早期,Google 构建了 DistBelief,这是第一代可扩展的分布式训练和推理系统。它可以利用具有数千台机器的计算集群来训练大型模型。 谷歌在这方面进行了许多项目,包括无监督学习、语言表示、图像和对象检测模型、人脸和语…
-
排名前10的人工智能算法!
人工智能 (AI) 是在经过训练后可以像人类一样思考和行动的计算机模拟人类智力的技术。 机器学习是人工智能的一个子集,指的是计算机系统可以从输入的数据中学习并适应新数据而无需人工干预的概念。 所有的 AI 模型都是为了发现一个函数 (f),这个函数提供的是输入变量(x)和输出变量 (y) 之间最精确的关联关系。 最典型的场景是当我们有一些历史数据 X 和 Y…
-
深度学习的8种神经网络
什么是神经网络? 神经网络是机器学习的一个子集,是深度学习算法的核心。它们也被称为人工神经网络或模拟神经网络。它们的名称和结构源自人脑,它们类似于生物神经元相互交流的方式。 在人工神经网络 (ANN) 中,节点层包含一个输入层、一个或多个隐藏层和一个输出层。每个节点或人工神经元都与其他节点相连,并具有与其相关联的权重和阈值。如果节点的输出超过某个阈值,则该节…
-
递归神经网络 (RNN)的类型和应用
作为最流行的机器学习算法之一,神经网络在准确性和速度方面都优于其他算法。因此,透彻了解神经网络是什么、它是如何构建的以及它的范围和局限性是至关重要的。 循环神经网络 (RNN) 是一种处理时间序列或顺序数据的人工神经网络。这些深度学习算法通常用于语言翻译、自然语言处理 (NLP)、语音识别和图像字幕等顺序或时间问题;它们包含在 Siri、语音搜索和谷歌翻译等…
-
AI中的爬山算法详解
局部搜索策略用于定位一个潜在的解决方案,该解决方案优化了具有挑战性的优化问题的标准。爬山算法是一种局部搜索算法,不断向增加高度或值的方向前进,以找到山顶或问题的最佳解。当它达到一个峰值时,它的邻居都没有更高的值,它就结束了。 使用数学优化解决问题的技术是爬山算法。爬山算法最流行的例子之一是旅行推销员。问题:我们需要减少推销员的行进距离。 它也被称为贪婪的局部…
-
2023年最全面最热门的机器学习算法
在过去的几年里,我根据自己的工作经验、与其他数据科学家的对话以及我在网上阅读的内容,整理了我认为最重要的机器学习算法。 今年,我想通过提供更多类型的模型以及每个类别中的更多模型来扩展去年的文章。通过这个,我希望提供一个工具和技术的存储库,您可以将其添加为书签,以便您可以解决各种数据科学问题! 话虽如此,让我们深入研究六种最重要的机器学习算法: 解释性算法 模…
-
适合初学者的8大最火爆的机器学习库!
机器学习生态系统在过去十年中发展了很多。人工智能相关的社区已经发展的非常强大,开放、乐于助人是开源精神之一,这也让我们接触到很多优秀的机器学习库,帮助我们一步步成长。 本文就带您了解8大最火爆的机器学习库! 以下是根据使用目的不同,整理的一份最火爆的机器学习开源库,您可以收藏下来以便后续学习: 作用 开源库 科学计算 Numpy 数据处理 Pandas 数据…
-
2023年您需要了解的10大机器学习工具!
随着人工智能时代的来临,机器学习在技术领域取得了很大的进步。预计2023年,机器学习与人工智能将继续创造更多的工作岗位和经济效益。 机器学习是一种允许机器从经验中学习的概念,而且无需明确编程。如何实现这一点很多人可能还不了解,事实上,我们现在有很多可用的机器学习工具。接下来,本文将带您了解2023年最火爆的10大继续学习工具。 Scikit-Learn Sc…
-
25个好用又免费的机器学习训练集!
你应该知道,训练数据集是机器学习不可或缺的一部分。在5—10年前,人们很难找到用于机器学习、数据科学的训练数据集,但现在,最大的问题不是寻找数据集,而是在巨量数据中筛选出业务相关的训练集。 所以,基于此原因,本文章整理了25个好用又免费的机器学习训练数据集,您可以从这些网站中随便下载适用您业务的训练集! 本文章欢迎转载,转载请标明来源:Python技术站(网…
-
神经网络:多层感知器(附源码)
在之前的博客中 ,您了解了名为Perceptron的单个人工神经元。在本神经网络教程中,我们将向前迈出一步,讨论称为多层感知器(人工神经网络)的感知器网络。 我们将在本神经网络教程中讨论以下主题: 单层感知器的局限性 什么是多层感知器(人工神经网络)? 人工神经网络如何工作? 用例 这篇关于神经网络教程的博客最后将包含一个用例。我们将使用 TensorFlo…
-
深度学习:感知器学习算法(附源码)
介绍 感知器是创建深度神经网络的基本构建块,因此,我们首先应该使用感知器开始深度学习之旅,并学习如何使用 TensorFlow 实现它,并来解决不同的问题。以下是此关于感知器学习算法的博客涵盖的主题: 作为线性分类器的感知器 使用 TensorFlow 库实现感知器 使用单层感知器的 SONAR 数据分类 分类问题的类型 可以将可以使用神经网络解决的各种分类…
-
深度学习教程:使用深度学习的人工智能
作为机器学习的一个重要子集,对深度学习认证的需求已经出现了巨大的增长,尤其是那些有兴趣释放人工智能无限可能性的人。 深度学习教程 在本文中,将带您了解以下内容,这些内容将作为后续博客的基础知识: 是什么让深度学习应运而生? 什么是深度学习以及它的工作原理? 人工智能与深度学习的应用 现在想想这个场景,你不需要做所有的工作,因为你有一台机器来为你完成它,甚至可…
-
什么是人工神经网络?人工神经网络(ANN)简介
随着机器学习的进步,人工智能已经走上了高速发展的道路。深度学习被认为是为解决使用海量数据集的复杂问题而构建的最先进技术。 本文将向您介绍神经网络的基本概念以及它们如何解决复杂的数据驱动问题。 什么是神经网络 根据人脑建模,构建了神经网络来模仿人脑的功能。人脑是由多个神经元组成的神经网络,类似地,人工神经网络(ANN)是由多个感知器组成的(稍后解释)。 神经网…
-
深度学习Python实战:用Python实现第一个深度学习程序!
深度学习是 2018-22 年度最热门的话题之一。近几年该行业取得了非常大的进步,可以说机器或计算机程序真正取代人类的时代已经到来。 在本文章,将使用 Python 进行深度学习的的实战,希望能帮助您了解深度学习到底是什么,以及它是如何实现的。 我将在本文中介绍以下主题: 理论篇 深度学习的作用 什么是深度学习? 感知器和人工神经网络 深度学习的应用 为什么…
-
什么是深度学习?深度学习入门!
什么是深度学习? 在本文中,我们将讨论什么是深度学习,这是当前业内非常热门的话题,并且深度学习在人工智能、大数据和大数据分析等领域的众多行业中得到非常广泛的应用。例如,谷歌在语音、图像识别算法中就使用深度学习, Netflix 和亚马逊也使用它来了解客户的行为。 也许你不会相信,但美国麻省理工学院的一些研究人员正在尝试使用深度学习来预测未来。深度学习拥有改变…
-
2023年人工智能12大应用趋势
近几年我们正迎来人工智能技术市场需求及应用的蓬勃发展,很多人还没有意识到人工智能正在迅速而彻底地改变我们日常生活的方方面面。 本文将介绍2023年最需要了解的12种人工智能技术的应用领域,希望对所有关心人工智能发展走向的朋友带来参考和启发。 12大人工智能技术领域 机器人自动化流程 机器人流程自动化是人工智能技术应用的一大趋势。你可以将其理解成是对RPA的智…