什么是数据清理?为什么说清理数据非常重要?

根据早期的大数据行业的调查发现,数据科学家工作中“最难受”的方面是数据清理,这占据了他们约60%的时间。

即使在近几年,数据清理仍是数据科学家耗时较长的工作内容。虽然2020年进行的一项调查显示出现在只将约45%的时间用于数据清理等数据准备工作,但这仍然表明,数据清理依然是个令人头疼的问题。

大多数人都同意,我们在使用数据时,您的见解和分析的质量与您所使用的数据的质量直接相关。如何保证数据的质量,在大数据分析计算工作中,是最为重要的一个内容。

如果您希望在企业内部建立一种围绕使用高质量数据进行分析决策的企业文化,最关键的第一步也是数据清理。

正如我们在之前的文章《什么是大数据》中所说的大数据的价值密度低的特征:价值密度的高低与数据总量的大小成反比。这也意味着如何从大规模数据中提炼高价值的内容是大数据分析最为重要的部分。

那么什么是数据清理?为什么它如此重要?它能解决什么问题,本章内容将带您深入探讨。

什么是数据清理?为什么说清理数据非常重要?

什么是数据清理?

数据清理,也叫数据清洗,是大数据分析的一项重要工作。它的主要目的是组织和修复错误的、结构不正确的或无序的数据的过程。

譬如说,您可以以不同的方式取得客户的电话号码,比如调查问卷,抽奖活动等等。但最终这些电话号码都需要标准化,以保证在使用它们之前,它们的格式都是相同的。

有序的、结构化的标准数据才能为我们所用,产生实际的价值。但多数情况下,有各种不同的原因导致数据可能无序、无组织、不标准。有可能地址格式不一致,记录重复,有些需要适当地处理空格等等。

遇到这种问题,就需要用到数据清理。

你可以使用多种技术来清理数据。可以用Excel清理,使用Python或SQL查询中手动处理。也可以使用专门的清理数据的软件,如Trifacta。此外,它偶尔也会用于ETL(Extract Transform Load,数据仓库技术)过程中,当数据从源中提取并装入仓库时,ETL过程会清理数据。

只要有错误或无用的数据产生,就需要进行数据清理。而产生错误、无用数据又是不可避免的,特别是当数据是由个人手动提交时,信息经常是不正确的,机器生成的数据也可能包含潜在的错误,特别是如果生产数据与来自测试数据源的数据相结合。

机器产生的很多数据都是以一种对机器有帮助而对人类没有帮助的方式产生的。举个例子,在记录大量事件数据时,一些字段经常被放在另一个字段中,以使数据更容易存储。虽然这种结构通常对机器人有利,但它对人类的分析具有挑战性。

推荐阅读:《2023年7大数据清理工具!》

为什么数据清理非常重要?

更高质量的数据会影响包含数据的每项活动。几乎所有现代业务流程都涉及数据。当数据清理被视为一项重要的组织工作时,它可以为所有人带来广泛的好处。一些最大的优势包括:

  • 简化的业务实践:想象一下,如果您的任何记录中没有重复、错误或不一致的情况。您所有主要的日常活动的效率会提高多少?
  • 提高生产力:能够专注于关键工作任务,而不是找到正确的数据或因数据不正确而不得不进行更正,这一点至关重要。在有效的知识管理的帮助下,获得干净的高质量数据 可以改变游戏规则。
  • 更快的销售周期:营销决策取决于数据。为您的营销部门提供尽可能最好的质量数据意味着您的销售团队可以转换更好、更多的销售线索。同样的概念也适用于 B2C 关系!
  • 更好的决策:我们之前提到过这一点,但它非常重要,值得重复。更好的数据 = 更好的决策。

另外,很多企业正在努力利用数据分析来提高公司绩效并获得相对于竞争对手的竞争优势,这也导致业务运营和决策正变得越来越受数据驱动。因此,干净的数据对于企业领导、市场经理、销售代表、运营人员以及BI和数据科学团队都是必不可少的。这一点适用于所有大大小小的企业,但尤其适用于零售、金融服务和其他数据密集型行业。

如果数据没有得到充分的清理,客户记录和其他的企业数据可能不可靠,分析工具可能产生不准确的信息,然后产生一系列糟糕的业务决策和错误的规划,最终可能会增加费用、降低收入和利润。根据IBM在2016年的一项估算,数据质量问题让美国企业损失了3.1万亿美元。

通过定位和消除错误来清理数据集,这是数据清理的本质。保证您所处理的数据总是准确和高质量的,这是数据清理的最终目标。

另外一些调查表明,如果不加以有效管理,企业数据集的质量也可能以惊人的速度恶化。例如,根据大多数分析师的说法,B2B客户数据以每年至少30%的速度恶化,在一些高周转率的业务中,甚至可以达到每年70%。

干净数据有哪些特征

数据集的洁净度和一般质量的度量包括数据的以下属性和特征:

  • 精度
  • 完整性
  • 一致性
  • 完整性
  • 及时性
  • 均匀性
  • 有效性

数据质量度量是由数据管理团队开发的,用于监控这些特征以及数据集中的错误率和总体错误数量等元素。许多人还努力确定数据质量问题的商业影响,以及解决这些问题的潜在财务价值,部分是通过调查和与公司领导的对话。

而关于如何清理数据,清理数据的方法有哪些,我们在《如何清理数据?数据清理的方法有哪些?》一文继续探讨。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:什么是数据清理?为什么说清理数据非常重要? - Python技术站

(0)
上一篇 2022年11月18日 下午8:58
下一篇 2022年11月20日 上午10:34

相关文章

  • 信号处理的应用范围有哪些?

    信号处理是一种涉及信号采集、分析、传输和处理等多个领域的交叉学科,其应用范围涉及到多个行业和领域。以下是信号处理的应用范围及示例说明: 1. 通信系统 信号处理在通信系统中应用广泛。例如,信号处理在无线通信中用于频率分离和多路复用,以及在音频和视频通信中用于信号压缩和解压缩。信号处理技术还可以用于改善通信信号质量,例如通过消除噪声和调整信号功率来提高通信质量…

    大数据 2023年4月19日
    00
  • A/B测试与灰度发布

    A/B测试和灰度发布是两种常用的产品优化手段,都可以用来验证不同产品改进方案的效果。下面是两者的详细讲解。 A/B测试 什么是A/B测试? A/B测试是一种通过对比不同版本的产品页面或功能来确定哪种方案更有效的方法。通常将用户随机分成若干组,每一组的用户看到的产品版本都不同。通过对比各个组的用户行为以及用户反馈,可以确定哪种方案更受欢迎或者更有效。 A/B测…

    bigdata 2023年3月27日
    00
  • 大数据技术的现状与面临的挑战

    本文主要从技术层面探讨大数据目前的现状以及面临的挑战。在此之前,如果你对大数据的概念还比较模糊,可阅读什么是大数据?了解。 如何定义大数据 目前我们已经了解到,大数据是由于数据量的巨大增长而产生的。所以,“大数据”一词主要描述的是规模巨大的混合数据集,这种数据集是结构化与非结构化数据的融合。 通常,大数据的特征是通过3V来解释的,即体积、速度和多样性。 体积…

    2022年11月17日
    00
  • 数据建模中常用的方法有哪些?

    数据建模是数据分析领域的重要内容,它是通过对数据进行分类、组织和转换,将复杂的数据结构转化为对应的数据模型,以满足业务需求,并且方便数据分析和数据处理。常用的数据建模方法如下: 数据建模方法 1. 实体关系建模(ER建模) 实体关系建模是一种以实体与实体之间的联系为基础,对实体进行建模的方法。这种建模方法可用于任何类型的企业,例如,制造、销售、财务、人事等。…

    大数据 2023年4月19日
    00
  • 大数据的应用范围有哪些?

    大数据的应用范围包括但不限于以下几个方面: 1. 商业智能 商业智能是大数据应用的一种重要方式。商业智能可以帮助企业更好地理解他们的客户、市场和竞争对手。通过对海量数据的挖掘和分析,商业智能软件可以帮助企业获得了解客户趋势、预测需求、改善销售等商业领域的知识。这种数据分析的结 果可以帮助企业实现更优质的客户服务、更高的效率和更大的获利空间。 举一个商业智能的…

    大数据 2023年4月19日
    00
  • 文本挖掘和自然语言处理的区别

    文本挖掘和自然语言处理都是处理文本数据的技术,但是它们的目的和方法略有不同。 一、文本挖掘 文本挖掘(Text Mining)是从大规模的文本数据中寻找并提取潜在的、以前未知的、有价值的信息的技术。它包括信息提取、分类、聚类、推荐系统、情感分析等任务。 文本挖掘的主要任务包括: 1.文本预处理:包括文本清洗、分词、停用词过滤、词干提取等。 2.特征提取:将文…

    bigdata 2023年3月27日
    00
  • 如何构建一个大数据平台

    构建一个大数据平台需要经历以下几个主要步骤: 步骤一:规划和设计 在开始构建大数据平台之前,需要规划和设计整个平台的架构和数据流。这包括以下几个方面: 1. 确定数据源和数据采集 确定数据源是构建大数据平台的一个关键步骤。主要的数据源包括数据来源于系统内部、外部数据源和第三方数据。在确定了数据源之后,需要设计合适的数据采集策略。 例如,如果要从传感器设备收集…

    bigdata 2023年3月27日
    00
  • 数据采集的步骤是什么?

    数据采集是指从各种来源收集数据,可能涉及到爬取网页、抓取API、解析日志等等。以下是基本的数据采集步骤: 1. 制定数据采集计划 在开始采集数据时,必须有一个清晰的计划,例如: 确定采集目标:需要确定采集什么类型的数据?涉及哪些网站、APP等? 确定采集频率与量:需要多久进行一次采集?需要采集多少数据? 确定采集工具与技术:需要使用什么采集工具?需要使用哪些…

    大数据 2023年4月19日
    00

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

合作推广
合作推广
分享本页
返回顶部