深度学习

  • 深度学习变革视觉计算总结(CCF-GAIR)

    孙剑博士分享的是《深度学习变革视觉计算》,分别从视觉智能、计算机摄影学和AI计算三个方面去介绍。 他首先回顾了深度学习发展历史,深度学习发展到今天并不容易,过程中遇到了两个主要障碍: 第一,深度神经网络能否很好地被训练。在深度学习获得成功之前曾被很多人怀疑,相比传统的机器学习理论,深度学习神经网络的参数要比数据大10倍甚至上百倍;   第二,当时的训练过程非…

    深度学习 2023年4月12日
    00
  • [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)

    译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI。为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务。然后,我们通过精细调参,来改进模型直至性能不再提升。尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽…

    深度学习 2023年4月12日
    00
  • 深度学习之TensorFlow(一)——基本使用

    一、目前主流的深度学习框架Caffe, TensorFlow, MXNet, Torch, Theano比较 库名称 开发语言 速度 灵活性 文档 适合模型 平台 上手难易 Caffe c++/cuda 快 一般 全面 CNN 所有系统 中等 TensorFlow c++/cuda/Python 中等 好 中等 CNN/RNN Linux, OSX 难 MX…

    深度学习 2023年4月12日
    00
  • 从统计学角度来看深度学习(2):自动编码器和自由能

    原文链接:http://blog.shakirm.com/2015/03/a-statistical-view-of-deep-learning-ii-auto-encoders-and-free-energy/ 作者:Shakir Mohamed  翻译:钟琰    审校:何通    编辑:王小宁 本文得到了原英文作者Shakir Mohamed的授权同意…

    深度学习 2023年4月12日
    00
  • 深度学习面试题25:分离卷积(separable卷积)

      举例   单个张量与多个卷积核的分离卷积   参考资料   举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_height, in_width, in_channels] input =tf.reshape(tf.constant([2,5,3,3,8,2,6,1…

    深度学习 2023年4月12日
    00
  • 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

      举例   单个张量与多个卷积核在深度上分别卷积   参考资料   举例 如下张量x和卷积核K进行depthwise_conv2d卷积   结果为: depthwise_conv2d和conv2d的不同之处在于conv2d在每一深度上卷积,然后求和,depthwise_conv2d没有求和这一步,对应代码为: import tensorflow as tf…

    深度学习 2023年4月12日
    00
  • 深度学习面试题23:批次张量和卷积核的简易定义方式

      直接定义的缺点   简易定义的方式   参考资料   直接定义的缺点 在tensorflow中假设有一批输入为: 其定义如下: tf.constant([ [ [ [3, 1, -3], [1, -1, 7] ], [ [-2, 2, -5], [2, 7, 3] ] ], [ [ [-1, 3, 1], [-3, -8, 6] ], [ [4, 6, …

    2023年4月12日
    00
  • 深度学习面试题10:二维卷积(Full卷积、Same卷积、Valid卷积、带深度的二维卷积)

      二维Full卷积   二维Same卷积   二维Valid卷积   三种卷积类型的关系   具备深度的二维卷积   具备深度的张量与多个卷积核的卷积   参考资料 二维卷积的原理和一维卷积类似,也有full卷积、same卷积和valid卷积。 举例:3*3的二维张量x和2*2的二维张量K进行卷积 二维Full卷积 Full卷积的计算过程是:K沿着x从左到…

    深度学习 2023年4月12日
    00
  • 深度学习面试题08:梯度消失与梯度爆炸

      梯度消失   梯度爆炸   参考资料   以下图的全连接神经网络为例,来演示梯度爆炸和梯度消失: 梯度消失 在模型参数w都是(-1,1)之间的数的前提下,如果激活函数选择的是sigmod(x),那么他的导函数σ’(x)的值域为(0,0.25],即如下三项的范围都是(0,0.25]   那么w1的导数会有很多(0,0.25]范围的数累乘,就会造成w1的导数…

    深度学习 2023年4月12日
    00
  • 深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)

      一维Full卷积   一维Same卷积   一维Valid卷积   三种卷积类型的关系   具备深度的一维卷积   具备深度的张量与多个卷积核的卷积   参考资料 一维卷积通常有三种类型:full卷积、same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程     一维Full卷积 Fu…

    深度学习 2023年4月12日
    00
合作推广
合作推广
分享本页
返回顶部