详解Pandas数据重采样(resample)的3种使用方法

Pandas中的resample方法用于对时间序列数据进行重采样,可以将数据从一个时间频率转换为另一个时间频率,比如将日频率的数据转换为月频率的数据。

resample的语法格式如下:

DataFrame.resample(rule, axis=0, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None, origin='start', offset=None)
参数说明:

  • rule:重采样的规则,例如"5min"表示5分钟,"D"表示天。具体规则可以参考Pandas官方文档。
  • how:对采样到的数据执行聚合操作的函数名或函数对象。例如"sum"、"mean"、"median"等。默认为None,表示不进行聚合操作。
  • axis:指定重采样的轴,0表示行轴,1表示列轴。默认为0。
  • fill_method:填充缺失值的方法,例如"ffill"、"bfill"等。默认为None,表示不填充缺失值。
  • closed:在重采样过程中,区间闭合的位置,例如"left"、"right"等。默认为None,表示使用默认值。
  • label:在重采样过程中,区间闭合位置的标签,例如"left"、"right"等。默认为None,表示使用默认值。
  • convention:在重采样过程中,指定重采样区间的位置是左边界还是右边界。默认为"start",表示使用左边界。
  • kind:在重采样过程中,指定返回的对象类型,例如"period"、"timestamp"等。默认为None,表示使用默认类型。
  • loffset:在重采样过程中,为重采样的时间序列添加偏移量。
  • limit:在重采样过程中,限制填充缺失值的连续次数。
  • base:在重采样过程中,指定重采样区间的基准点。
  • on:指定使用哪一列进行重采样。只有在DataFrame对象中使用才有用。
  • level:在MultiIndex对象中,指定要重采样的级别。

其中,最重要的参数是rule,表示重采样的规则,可以是一个字符串或pandas.tseries.offsets.DateOffset对象。同时,也可以使用其他参数进行更细致的控制。

下面通过几个例子来介绍resample的使用方法。

降采样:resample 将日频率数据转换为月频率数据

import pandas as pd
import numpy as np

# 创建一组日频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='D')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 将日频率数据转换为月频率数据
df.resample('M').mean()

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的日频率数据,然后将这组数据转换为月频率数据,并求出每个月的平均值。

升采样:resample 将秒频率数据转换为分钟频率数据

import pandas as pd
import numpy as np

# 创建一组秒频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='S')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 将秒频率数据转换为分钟频率数据
df.resample('1Min').sum()

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的秒频率数据,然后将这组数据转换为分钟频率数据,并求出每分钟的总和。

聚合采样:使用自定义函数进行重采样

import pandas as pd
import numpy as np

# 创建一组月频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='M')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 定义一个自定义函数
def custom_resampler(array_like):
    return np.sum(array_like) + 5

# 使用自定义函数进行重采样
df.resample('A').apply(custom_resampler)

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的月频率数据,然后使用自定义函数custom_resampler对数据进行重采样,并将结果按年进行聚合。

此文章发布者为:Python技术站作者[metahuber],转载请注明出处:http://pythonjishu.com/pandas-resample-3-used-method/

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023年 3月 6日 下午8:25
下一篇 2023年 3月 6日 下午8:53

相关推荐

  • Pandas loc、iloc用法详解

    Pandas中的loc和iloc都是用来选择数据的方法,主要作用是在DataFrame中根据行、列的标签或位置进行数据的选择和切片。 具体来说,loc通过标签选择数据,iloc通过位置选择数据。loc和iloc都可以使用切片和布尔索引,还支持多层索引和高级索引等操作。 下面详细介绍一下这两种方法的用法: loc方法 loc方法是通过行标签和列标签来访问数据的…

    Pandas 2023年 3月 5日
    00
  • 详解Pandas随机抽样(sample)使用方法

    Pandas中的sample()函数可以从数据集中随机抽取行或列,可以用于数据集的随机采样、创建数据集的随机子集、模型评估等场景。下面我们来详细介绍一下sample()函数的用法。 首先,sample()函数有以下几个参数: n: 抽取的行数或列数。 frac: 抽取的行数或列数相对于数据集的比例,范围在0到1之间。 replace: 是否允许重复抽取,默认…

    Pandas 2023年 3月 6日
    00
  • Pandas Series对象常用的属性和方法

    Pandas Series对象是一维标签数组,主要用于存储不同数据类型的数据。 Series常用属性 下面我们介绍 Series 的常用属性和方法。在下表列出了 Series 对象的常用属性。 名称 属性 index 返回一个Index对象,代表Series的索引。 values 返回一个numpy数组,代表Series的值。 dtype 返回Series中…

    Pandas 2023年 3月 4日
    00
  • 详解Pandas merge合并操作的4种方法

    pandas 中的 merge 函数可以将两个数据集按照指定的列进行合并,类似于 SQL 中的 join 操作。merge 函数有多种合并方式,包括 inner join、left join、right join 和 outer join 等。 下面我们就来详细介绍一下 merge 函数的使用方法。 数据准备 我们首先准备两个数据集,一个是包含员工基本信息的…

    Pandas 2023年 3月 5日
    00
  • Pandas 格式化日期时间

    当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,就需要对日期时间做统一的格式化处理。 比如“Wednesday, June 6, 2023”可以写成“6/6/23”,或“06-06-2023”。 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。…

    Pandas 2023年 3月 6日
    00
  • Pandas最常用的4种窗口函数

    Pandas窗口函数(Window Function)是一种基于滑动窗口的函数,用于在序列或数据框上执行基于窗口的操作,如滚动平均、滚动求和、滚动方差等。 与一般的聚合函数不同,窗口函数可以计算滑动窗口内的值,并生成与原序列或数据框相同长度的序列或数据框。 接下来将为你介绍Pandas中常用的4种窗口函数。 滚动平均值 滚动平均值是指在滑动窗口内计算平均值。…

    Pandas 2023年 3月 5日
    00
  • Pandas是什么?Pandas的特点与优势

    Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来,享有数据分析“三剑客之一”的盛名(NumPy、Matplotlib、Pandas)。目前,Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。 Pandas 最初由 Wes M…

    2023年 3月 4日
    00
  • Pandas DataFrame结构对象的创建与访问方法

    Pandas DataFrame结构是什么? Pandas DataFrame 是一种二维、大小可变且表格型的数据结构,它可以存储许多类型的数据并提供多种数据操作功能。 DataFrame 既有行索引也有列索引,类似于一个电子表格或 SQL 表格,能够更加方便地处理数据。结构如下图: Pandas DataFrame 的作用主要有: 数据的读取和写入:可以通…

    2023年 3月 4日
    00
  • Pandas绘图方法(plot)详解

    Pandas 在数据可视化方面有着较为广泛的应用,Pandas 的 plot() 方法可以用来绘制各种类型的统计图表,包括线图、散点图、柱状图、饼图、密度图等等。 plot() 方法是基于matplotlib库构建的,因此具有很高的灵活性和可定制性,可以通过参数设置对图表进行调整。plot()方法可以直接作用于Series、DataFrame和GroupBy…

    2023年 3月 6日 Pandas
    00
  • Pandas reindex重置索引的4种方法

    Pandas的reindex()方法可以用来重新排列DataFrame或Series的索引,并返回一个具有新索引的新对象。reindex()方法有以下几种常用的用法: Series.reindex() Series.reindex()方法用于Series类型,可以根据给定的索引值重新排列Series的索引。当索引值在原Series中不存在时,对应的值会被填充…

    Pandas 2023年 3月 4日
    00